
Private Public Choice∗

Felix Brandt

Computer Science Department

Technical University of Munich

brandtf@cs.tum.edu

Technical Report FKI-247-03

March 2003

Abstract

The fields of social choice theory and mechanism design deal with the

aggregation of conflicting preferences in a group of agents, may they be elec-

tronic or human. Two central problems in these areas are the social choice

problem and the mechanism design problem. We argue that the protection

of individual preferences has not been considered so far and introduce the

preference protection problem, which we aim to solve by applying a fruitful

subfield of cryptography called secure multiparty computation. Similar to the

implementation of social choice functions in mechanisms, our new view on

public choice adds another level to the model by introducing the emulation

of mechanisms by cryptographic protocols. This enables the private and se-

cure execution of mechanisms without trusted third-parties by distributing

the computation of the mechanism outcome on the participating agents. It is

shown that security against computationally bounded adversaries is possible

whereas general mechanisms can not be emulated by protocols that are secure

against unbounded adversaries. We then investigate how to construct effi-

cient special-purpose protocols, such as a protocol that emulates the Clarke

tax mechanism.

1 Introduction

With the growing number of electronic markets on the net, there comes a growing
demand for protection of privacy in electronic mechanisms. Instead of simply having
to rely on the trustworthiness of system operators, cryptography provides the tools
to ensure privacy in other ways. This report intends to bring the fields of mech-
anism design and secure multiparty computation together by generalizing our re-
sults already obtained in the area of cryptographic auction protocols [Brandt, 2002;
2003]. We aim at constructing secure social choice mechanisms by distributing the
mechanism computation on the participants themselves. This is achieved by using
multiparty computation that is not based on any trusted fraction (threshold) as-
sumptions. We show that the main reason for thresholds in the cryptographic model
is a robustness requirement that can be loosened in our case. As a consequence, the
correct and private execution of mechanisms can be guaranteed in the absence of
trusted third-parties. We say that a protocol is fully private if it is secure despite
any collusion of participants. In [Naor et al., 1999] the first (and, to the best of
our knowledge, only) scheme to privately evaluate mechanisms has been proposed.

∗Slightly revised version

1



Besides some similarities, their approach substantially differs from ours as they use
two third-parties that are assumed not to collude.

This report consists of two parts. The two following sections deal with the gen-
eral feasibility of secure and private mechanisms under various conditions, whereas
the fourth Section describes a cryptographic protocol that emulates the Clarke tax
mechanism by computing taxes for each agent without revealing additional informa-
tion (summed up valuations, identities of pivotal agents, and so forth). The report
concludes with a brief outlook in Section 5.

2 Public Choice

The aggregation of conflicting preferences in a group of agents is one of the cen-
tral topics of economics and multiagent systems. Two major problems have been
considered in this context so far [Mas-Colell et al., 1995].

Social choice problem 1 The problem is to find a function that “fairly” aggre-
gates conflicting preferences. The most important theorem in this context,
Arrow’s impossibility theorem, states it is impossible to find such a function
with unrestricted preferences under quite reasonable assumptions. When only
allowing restricted preferences like so-called single-peaked preferences, fair so-
cial choice functions can be specified.

Mechanism design problem In order to be able to apply a fair social choice func-
tion, agents need to submit their preferences. The mechanism design problem
is to construct mechanisms that urge self-interested agents to reveal prefer-
ences truthfully. Similarly to Arrow’s theorem, the Gibbard-Satterthwaite
theorem states the impossibility of finding such a mechanism for general pref-
erences. However, there are solutions for restricted sub-domains, e.g. the
Clarke tax mechanism for quasilinear preferences.

We believe that, similar to the recent extensions to mechanism design regarding
computational aspects [Parkes, 2001; Sandholm, 2000; Larson and Sandholm, 2001],
there is a need to consider privacy issues in mechanism design. In particular, we
are interested in making existing mechanisms secure and private without having to
rely on trusted third parties. Classically, the existence of a central institution that
receives all preferences and resolves the mechanism is assumed. However, neither the
correctness of the result nor the privacy of the individual inputs can be guaranteed.
Especially, incentive-compatible mechanisms might deter agents from participating
as they require the submission of true valuations. Confidentiality of these valuations
is essential for future negotiations and its revelation can be disastrous. We therefore
introduce the “preference protection problem”.

Preference protection problem The problem is to enable the correct execution
of a mechanism without trusted third-parties while preventing agents to learn
the preferences of other participants.

We suggest that a subfield of cryptography called “secure multiparty computa-
tion” is the key to solve the preference protection problem. Similar to the imple-
mentation of social choice functions in mechanisms, our new view on public choice
adds another level to the model by introducing the emulation of mechanisms with
cryptographic protocols (Figure 1).

1This problem is called “implementation problem” in [Parkes, 2001]. However, in the economic
literature “implementation problem” refers to a different problem.

2



1 2 3

Preferences Preferences

Mechanism

Social Choice Function

emulates

implements

Protocol

Figure 1: Cryptographic Mechanism Design

3 Secure Multiparty Computation

Secure multiparty computation (MPC) [Cramer and Damg̊ard, 2002; Franklin et al.,
1992; Cramer, 2000] deals with protocols that allow n parties to jointly compute
a function f(x1, x2, . . . , xn) = (y1, y2, . . . , yn) on their individual private inputs xi,
so that agent i only learns yi but nothing else. A classic example is the so-called
“millionaires’ problem” [Yao, 1986] in which two millionaires want to determine
who is richer without revealing their wealth.

The common model defines passive adversaries (or “eavesdropping adversaries”)
as agents that follow the protocol but try to derive additional information. Active
adversaries, on the other hand, try to violate privacy and correctness by every
means including the sending of faulty messages. Furthermore, there are two classes
of protocols. The security of computational protocols is based on complexity as-
sumptions, i.e., they are only safe against computationally polynomially bounded
adversaries. Unconditional (or information-theoretic) protocols provide perfect se-
curity given that agents can communicate via private channels. Typically, secure
MPC is accomplished by having each agent distribute shares of his individual input
on the other participants. This has to be carried out in conjunction with a commit-
ment scheme, so that agents can verify the correctness of shares. This primitive is
called “verifiable secret sharing”. In the following, the participants verifiably evalu-
ate a Boolean circuit representing function f(·) with their shares as inputs and new
shares as outputs. When the evaluation of the circuit is finished, agents broadcast
their resulting shares and reconstruct the final result.

3.1 Unconditional MPC

Let us first consider unconditional multiparty computation and its applicability to
secure mechanism design. Without making any intractability assumptions, veri-
fiable secret sharing can only be accomplished when more than one third of the
participants are honest. It has been proven that the secure computation of essential
Boolean gates like or and and is impossible in the unconditional model. However,
this can be achieved when only a minority of (passive) adversaries can pool their

3



knowledge. Furthermore, broadcasting, i.e. sending one message to all other agents,
is not generally possible (without a trusted third-party) because it has to be guar-
anteed that all agents receive the same message. It has been shown in [Lamport et
al., 1982] that reliable broadcasting can be achieved in the presence of bn−1

3 c (ac-
tive) adversaries in the unconditional case. Finally, agents that quit the protocol
in progress render it impossible to complete the computation of f(x1, x2, . . . , x3) in
their absence. This is a particular problem in the final stage of a protocol as exactly
simultaneous share revelation is not feasible. As a consequence, an agent is able to
reconstruct the result by using the shares that have been published so far and then
decide not to release his share, thus leaving the other agent uninformed about the
result. However, if a majority of the participants is assumed to be cooperating, the
shares can be distributed in a way that allows any majority of agents to reconstruct
the original values. This ensures robustness as no minority quitting the protocol
can prevent the correct execution of the protocol.

Definition 1 (Robustness)
A protocol is (strongly) robust if the correct computation of a function
f(x1, x2, . . . , xn) with private inputs x1, x2, . . . , xn can always be completed.

Robustness obviously implies the critical property of fairness.

Definition 2 (Fairness)
A protocol is fair if no agent can learn yi and then prevent the other participants
from learning y1, y2, . . . , yi−1, yi+1, yi+2, . . . , yn.

Concluding, unconditionally secure MPC is possible if there are not more than
bn−1

3 c active adversaries. Recapitulating, the reasons for thresholds in uncondi-
tional multiparty computation are:

1. Robustness, threshold: n
2

2. Feasibility of secure broadcasting, threshold: n
3

3. Feasibility of secure or, threshold: n
2

(even with only passive adversaries)

4. Feasibility of verifiable secret sharing, threshold: n
3

(n
2 with error probability and broadcast channel)

Now, let us try to make weak assumptions that might allow unconditional se-
cure MPC without thresholds. First of all, robustness against active adversaries
in MPC is defined to allow correct completion of the computation even if active ad-
versaries do not follow the protocol. Even when bn−1

2 c cheaters were forced to quit
the protocol, there are enough agents left to compute f(x1, x2, . . . , xn), including
the inputs of malicious participants. When presuming that active adversaries can
be detected and “kicked out”, including their inputs, this leads to a weaker, but for
our purpose sufficient, notion of robustness.

Definition 3 (Weak robustness)
A protocol is weakly robust if the correct computation of a function f(X) of inputs
supplied by non-adversaries X ⊆ {x1, x2, . . . , xn} can always be completed.

Of course, this only makes sense if f(·) is defined for any number of inputs
up to n. A weakly robust protocol terminates after at most n − 1 iterations. If
participation in a mechanism is voluntary, the outcome function of a mechanism is
defined for an arbitrary number of inputs n. To give an example, function f(·) can
be the outcome function of a Vickrey auction, i.e. a function that computes the

4



identity of the highest bidder and the amount of the second highest bid given the
individual bids as inputs. Clearly, this function is defined for any number of inputs
greater than one. We will give another example in Section 4.

Public verifiability of the protocol is sufficient to provide weak robustness
and verifiability can be easily achieved by using zero-knowledge proofs. Un-
fortunately, when abandoning strong robustness, we also lose “fairness”. Typ-
ically, in the end of a protocol run, each participant holds a share of the re-
sult. As simultaneous publication of these shares is impossible, a malicious
agent might quit the protocol after having learned the result but before oth-
ers were able to learn it. There are various techniques to approximate fair-
ness by gradually releasing parts of the secrets to be swapped. Another possi-
bility is to introduce a third-party that publishes the outcome after it received
all shares. This third-party does not learn confidential information. It is only
assumed not to leave the protocol prematurely. We learned that in auctions
with a single seller, it is practical to assign this role to the seller [Brandt, 2002;
2003].
Providing a secure broadcast channel can eliminate the second threshold. As
shown in [Pedersen, 1991] verifiable secret sharing can only provide uncondi-
tional security of either the shares’ correctness or the secret, but not both. The
latter seems much more practical since it means that the individuals’ preferences
can never be revealed. A malicious agent, however, can manipulate the protocol
by applying super-polynomial computational power during the protocol. The im-
possibility of securely evaluating or (and and) gates, however, cannot be removed.
This leads to the following proposition.

Proposition 1 (Unconditional mechanism emulation)
It is impossible to emulate arbitrary mechanisms by fully private protocols in the
unconditional model, even when assuming weak robustness, providing a broad-
cast channel, and accepting the possibility of manipulation by computationally un-
bounded cheaters.

Be aware that, like the impossibility of strategy-proof implementations for gen-
eral preferences in the Gibbard-Satterthwaite Theorem, Proposition 1 only states
the impossibility of a general mapping from mechanisms to protocols, i.e., many
mechanisms cannot be emulated by fully private protocols. However, there are
some primitive mechanisms that can be emulated under the assumptions of Propo-
sition 1, e.g., the sum of n input values can be computed fully private, weakly robust
in the unconditional model if we accept the (theoretical) possibility of manipula-
tions by computationally unbounded participants. Some MPC protocols work on
finite fields instead on binary values. In these arithmetic protocols, addition (and
thus xor and not gates) are feasible while multiplication of shares is impossible
(multiplication could be used to build or or and gates). Another example for an
unconditional, fully private protocol is the Dutch auction. This protocol emulates
the first-price sealed-bid auction without any intractability assumptions.

As unconditional protocols require private channels, there is a problem of mes-
sage disputes. A participant that did not send a message may claim that he did,
while on the other hand, a participant may state that he did not receive a message
that he in fact received.
It is reasonable to isolate this conflict at the beginning of the protocol by applying
the following procedure [Cramer et al., 1997]. The two parties agree on a (symmet-
ric) encryption key K and an information-theoretic secure commitment to this key,
and broadcast a signed copy of the commitment. If both published commitments
are equal, the two parties can henceforth communicate by broadcasting messages
encrypted with the private key K. If the commitments are different, the dispute

5



Adversary polynomially bounded unbounded

passive n− 1 bn−1
2 c

active bn−1
2 c bn−1

3 c

Table 1: General Secure Multiparty Computation Bounds

has to be resolved before the protocol itself begins.

3.2 Computational MPC

When allowing intractability assumptions, most of the reasons why unconditional
MPC is impossible can be removed. The classic results are based on the existence
of trapdoor one-way permutations2 like the problem of factoring large composite
numbers, or the decisional Diffie-Hellman problem (related to the difficulty of com-
puting discrete logarithms). In this setting, primitives like broadcasting [Lamport
et al., 1982] and verifiable secret sharing [Pedersen, 1991], and the secure compu-
tation of or gates are feasible without threshold assumptions. With the aid of our
notion of weak robustness, this yields the following proposition.

Proposition 2 (Computational mechanism emulation)
Any mechanism can be emulated by a fully private, weakly robust protocol in the
computational model.

The naive emulation of a mechanism can be extremely inefficient because general
cryptographic multiparty computation protocols work on single bits and have exces-
sive complexities3. E.g., the general purpose MPC protocol proposed in [Crépeau et
al., 1995] takes O(n2l3D) rounds and has a computational complexity of O(n2l3C)
operations where l is a security parameter, C the size, and D the depth of the
boolean circuit. Therefore, the design of efficient, specialized protocols remains a
problem.

Table 1 shows the classic results of proven bounds of adversaries tolerable in
general secure multiparty computation4. The results for the computational case
have been proposed in [Goldreich et al., 1987]. The bounds for unconditional ad-
versaries have been found simultaneously by [Ben-Or et al., 1988] and [Chaum et
al., 1988].

Recently, probabilistic homomorphic encryption has attracted attention in the
context of MPC [Cramer et al., 2001]. It allows more efficient MPC by sharing
just one secret key instead of all input values. The computation can be performed
directly on encrypted values. This results in just O(D) rounds and O(nlC) sent bits.
However, this is currently only possible for factorization based encryption schemes
like Paillier encryption [Paillier, 1999]. The joint generation of secret keys needed for
such schemes is quite inefficient [Algesheimer et al., 2002; Boneh and Franklin, 1997;
Damg̊ard and Koprowski, 2001], especially when requiring full privacy. On the
other hand, key generation is only needed once at the beginning of a protocol
and this kind of MPC can be very effective for large circuits. It would be nice
to build an MPC scheme on a discrete logarithm based encryption technique like

2All the assumptions needed in the computational model can be reduced to the existence of
“oblivious transfer” which can be achieved by noisy channels, trapdoor functions, or quantum
channels.

3Faster implementations like [Gennaro et al., 1998] rely on the assumption that a majority of
the participants is honest.

4bn−1
2

c active adversaries are tolerable in the unconditional case when allowing non-zero error
probability and a broadcast channel.

6



ElGamal [ElGamal, 1985] because distributed key generation is much simpler in such
cryptosystems [Gennaro et al., 1999]. Homomorphic encryption MPC and classic
secret sharing MPC have in common that multiplications, and thus and and or
gates, require more efforts (in terms of round and computational complexity) than
additions. Generally, additions can be performed without any overhead, whereas
multiplications need extra rounds of communication. For this reason, we sometimes
say “slow” gates when speaking of multiplication, and and or gates in the following.

4 Efficient Mechanism Emulation

In this section, we present basic techniques that enable the construction of efficient
protocols. We focus on the optimization of round complexity rather than bandwidth
and computational complexity. Many mechanisms require operations like max or
maxarg that cannot be evaluated by arithmetic circuits consisting of addition and
multiplication gates. The obvious alternative is to use Boolean circuits that work
on binary representations of the input values. However, the naive construction of
a Boolean circuit that computes the outcome of a somewhat complex mechanism
will be extremely inefficient because elementary operations like add and max require
lots of slow gates.

As multiplications are expensive, we are using arithmetic circuits that work on
binary vectors whose size is linear in the number of possible values in contrast to
the standard radix representation that produces logarithmic sized bit vectors. This
technique leads to a higher bandwidth demand, but enables protocols that use much
less multiplications. In fact, we have been using this method to design a protocol
that securely emulates the (M+1)st-price auction mechanism in a constant number
of rounds, i.e. without any slow gates [Brandt, 2003].

As additions can be performed without any overhead, the computation of linear
combinations of secrets can be executed in a single round. When computing on
vectors of encrypted values, this means that besides addition and subtraction of
vectors, multiplication with (known) matrices is feasible. Despite the impossibil-
ity of efficiently multiplying two secret values, we found a method that enables the
multiplication with a random number that is unknown to any subset of participants
(see [Brandt, 2003; 2002] for details) in a single round. We will denote the multipli-
cation of vector components with random values by using a random multiplication
matrix. Please note that the components Mj are jointly created and unknown to
the agents.

R∗ =









Mk 0 · · · 0

0 Mk−1
. . .

...
...

. . .
. . . 0

0 · · · 0 M1









(random multiplication matrix)

Given these operations, we now sketch how to design a cryptographic protocol that
emulates the Clarke tax mechanism.

Suppose we have n agents that intend to choose between m project choices.
The private value of choice l ∈ {1, 2, . . . ,m} to agent i ∈ {1, 2, . . . , n} is denoted by
vi(l) ∈ {1, 2, . . . , k}. The mechanism outcome consists of the project choice g∗ and
the individual taxes taxi that are defined by the following equations.

g∗ = maxargg

(

(addn
i=1(vi(g)))

m
g=1

)

taxi = sub(addn
h=1,h6=i(vh(g

∗)),maxm
l=1(addn

h=1,h6=i(vh(l))))

7



We therefore need add, max, maxarg, and sub as building blocks for our secure
emulation of the Clarke tax mechanism.

The protocol uses the vector representation mentioned above, e.g., the value of
project choice l to agent i is denoted by5

~vi(l) = (vi1(l), vi2(l), . . . , vik(l)) = (0, . . . , 0
︸ ︷︷ ︸

vi(l)−1

, 1, 0, . . . , 0
︸ ︷︷ ︸

k−vi(l)

) .

The jth component of a vector is denoted by vij(l).
At the beginning of the protocol, the first agent publishes m encrypted vec-

tors containing his valuations for the m different project choices. He proves the
correctness of these vectors by showing ∀j ∈ {1, 2, . . . , k} : vij(l) ∈ {0, 1} and
∑k

j=1 vij(l) = 1 in zero-knowledge manner (see [Brandt, 2002] for the detailed zero-
knowledge protocols).

4.1 Addition

Given vector ~v1, a second agent can add his value v2 by shifting up the given
vector v2 times, re-randomizing and publishing the resulting vector ~v and proving
its correctness like above. Another proof of correctness is needed to guarantee that
the vector was indeed shifted up. This can be done by computing ~w = (U~v1 + ~v)R∗

where

U =









1 · · · · · · 1

0
. . .

...
...
. . .

. . .
...

0 · · · 0 1









. (upper triangular matrix)

~w is jointly decrypted so that only the first agent can read it. If wj 6= 0 for any j

lower than his private value v1, the second agent did not correctly add his value.
This can be proven by agent 1 without revealing his private value. Altogether, the
addition of n private values requires n rounds. The summed up value of choice l is
denoted by ~s(l).

4.2 Maximum and Maximum Argument

The maximum of m given vectors ~s(l) can be determined by computing
(

m⊙

l=1

U~s(l)

)

D where

D =












1 −1 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . . −1

0 · · · · · · 0 1












(differential matrix)

and ¯ denotes the component-wise multiplication of vectors, i.e.







xk

xk−1

...
x1







¯








yk

yk−1

...
y1







=








xkyk

xk−1yk−1

...
x1y1








.

5To save space, vector components are listed horizontally (bottom-up).

8



Input Output Multiplications Mult. Rounds

add vector, private value vector – –

max m vectors vector m · k log(m)

maxarg m vectors index – –

sub 2 vectors number – –

Table 2: Subprotocols

Altogether, the computation of the maximum needs m · k multiplications that can
be executed parallely in log(m) multiplication rounds. As the number of different
project choices m is usually quite small, this complexity should be tolerable.
The maximum argument of m values ~s(l) can be determined by computing al =(
∑k

j=1 sj(l)− wj

)

rl where rl are jointly created random numbers and ~w is the

maximum of the given vectors. al = 0 if ~s(l) contained the highest value (or one of
the highest values in case of ties).

4.3 Subtraction

Finally, in order to compute the individual taxes, we need to subtract two vectors.
Assuming that ~s1 is greater than ~s2, we compute d =

∑k
j=1 (U (~s2 − ~s1))j . d then

contains an encryption of the difference of both values.
Table 2 summarizes the properties of the proposed building blocks. maxarg re-

quires that the maximum has been computed before. As we need the maximum
value to calculate the taxes, this generates no extra efforts (in this type of mech-
anism). Putting all these modules together, we can privately compute individual
taxes according to the Clarke tax mechanism. The only part that needs multipli-
cations is the maximum computation and these can be heavily parallelized (even
when taking into account that n+ 1 maxima have to be computed to calculate all
taxes) so that only log(m) multiplication rounds are needed in total.

5 Conclusion

We investigated how secure multiparty computation can be used to emulate mecha-
nisms with cryptographic protocols. In contrast to a common assumption in mech-
anism design, the world does not end after a mechanism terminated. Knowledge
about agents’ preferences can be of great value for future negotiations and therefore
has to be protected appropriately. We have shown that security against compu-
tationally bounded adversaries is possible whereas general mechanisms can not be
emulated with protocols that are secure against unbounded adversaries. We then
described the construction of a special-purpose protocol that emulates the Clarke
tax mechanism by using as few multiplications as possible. The resulting protocol
is quite efficient in terms of round complexity. The drawback, however, is that
bandwidth consumption is linear in k (the number of different valuations). In the
future, we intend to further investigate the combination of cryptography and mech-
anism design and to construct protocols that efficiently emulate other mechanisms
like tractable instances of combinatorial auctions or the dAGVA mechanism.

9



References

[Algesheimer et al., 2002] J. Algesheimer, J. Camenisch, and V. Shoup. Efficient
computation modulo a shared secret with application to the generation of shared
safe-prime products. In Advances in Cryptology - Proceedings of the 22th Annual
International Cryptology Conference (CRYPTO), volume 2442 of Lecture Notes
in Computer Science, pages 417–432. Springer, 2002.

[Ben-Or et al., 1988] M. Ben-Or, S. Goldwasser, and A. Wigderson. Complete-
ness theorems for non-cryptographic fault-tolerant distributed computation. In
Proceedings of the 20th Annual ACM Symposium on the Theory of Computing
(STOC), pages 1–10. ACM Press, 1988.

[Boneh and Franklin, 1997] D. Boneh and M. Franklin. Efficient generation of
shared RSA keys. In Advances in Cryptology - Proceedings of the 17th Annual
International Cryptology Conference (CRYPTO), volume 1294, pages 425–439.
Springer, 1997.

[Brandt, 2002] F. Brandt. A verifiable, bidder-resolved auction protocol. In R. Fal-
cone, S. Barber, L. Korba, and M. Singh, editors, Proceedings of the 5th Interna-
tional Workshop on Deception, Fraud and Trust in Agent Societies (Special Track
on Privacy and Protection with Multi-Agent Systems), pages 18–25, 2002.

[Brandt, 2003] F. Brandt. Fully private auctions in a constant number of rounds.
In Proceedings of the 7th Annual Conference on Financial Cryptography (FC),
Lecture Notes in Computer Science. Springer, 2003. to appear.

[Chaum et al., 1988] D. Chaum, C. Crépeau, and I. Damg̊ard. Multi-party uncon-
ditionally secure protocols. In Proceedings of the 20th Annual ACM Symposium
on the Theory of Computing (STOC), pages 11–19. ACM Press, 1988.

[Cramer and Damg̊ard, 2002] R. Cramer and I. Damg̊ard. Multiparty computa-
tion - An introduction. Lecture Notes, University of Aarhus, Department for
Computer Science, 2002.

[Cramer et al., 1997] R. Cramer, R. Gennaro, and B. Schoenmakers. A secure and
optimally efficient multi-authority election scheme. In Advances in Cryptology -
Proceedings of the 14th Eurocrypt Conference, volume 1233 of Lecture Notes in
Computer Science, pages 103–118. Springer, 1997.

[Cramer et al., 2001] R. Cramer, I. Damg̊ard, and J. B. Nielsen. Multiparty com-
putation from threshold homomorphic encryption. In Advances in Cryptology -
Proceedings of the 18th Eurocrypt Conference, volume 2045 of Lecture Notes in
Computer Science, pages 280–300. Springer, 2001.

[Cramer, 2000] R. Cramer. Introduction to secure computation. Lecture Notes,
University of Aarhus, Department for Computer Science, 2000.

[Crépeau et al., 1995] C. Crépeau, J. van de Graaf, and A. Tapp. Comitted oblivi-
ous transfer and private multiparty commputation. In Advances in Cryptology -
Proceedings of the 15th Annual International Cryptology Conference (CRYPTO),
volume 963 of Lecture Notes in Computer Science, pages 110–123, 1995.

[Damg̊ard and Koprowski, 2001] I. Damg̊ard and M. Koprowski. Practical thresh-
old RSA signatures without a trusted dealer. In Advances in Cryptology - Proceed-
ings of the 18th Eurocrypt Conference, volume 2045 of Lecture Notes in Computer
Science, pages 152–165. Springer, 2001.

10



[ElGamal, 1985] T. ElGamal. A public key cryptosystem and a signature scheme
based on discrete logarithms. IEEE Transactions on Information Theory, 31:469–
472, 1985.

[Franklin et al., 1992] M. Franklin, Z. Galil, and M. Yung. An overview of secure
distributed computing. Technical Report TR CUCS-008-92, Columbia University,
1992.

[Gennaro et al., 1998] R. Gennaro, M. Rabin, and T. Rabin. Simplified VSS and
fast-track multiparty computations with applications to threshold cryptography.
In Proceedings of the 17th annual ACM Symposium on Principles of Distributed
Computing (PODC), pages 101–111. ACM Press, 1998.

[Gennaro et al., 1999] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure
distributed key generation for discrete-log based cryptosystems. In Advances
in Cryptology - Proceedings of the 16th Eurocrypt Conference, volume 1592 of
Lecture Notes in Computer Science, pages 295–310. Springer, 1999.

[Goldreich et al., 1987] O. Goldreich, S. Micali, and A. Wigderson. How to play
any mental game or a completeness theorem for protocols with honest majority.
In Proceedings of the 19th Annual ACM Symposium on the Theory of Computing
(STOC), pages 218–229. ACM Press, 1987.

[Lamport et al., 1982] L. Lamport, R. Shostak, and M. Pease. The Byzantine gen-
erals problem. ACM Transactions on Programming Languages and Systems,
4(3):382–401, 1982.

[Larson and Sandholm, 2001] K. Larson and T. Sandholm. Computationally lim-
ited agents in auctions. In Theoretical Aspects of Reasoning about Knowledge
(TARK), pages 169–182, 2001.

[Mas-Colell et al., 1995] A. Mas-Colell, M. D. Whinston, and J. R. Green. Microe-
conomic Theory. Oxford University Press, Inc., 1995.

[Naor et al., 1999] M. Naor, B. Pinkas, and R. Sumner. Privacy preserving auctions
and mechanism design. In Proceedings of the 1st ACM Conference on Electronic
Commerce, pages 129–139. ACM Press, 1999.

[Paillier, 1999] P. Paillier. Public-key cryptosystems based on composite degree
residuosity classes. In Advances in Cryptology - Proceedings of the 16th Eurocrypt
Conference, volume 1592 of Lecture Notes in Computer Science, pages 223–238.
Springer, 1999.

[Parkes, 2001] D. Parkes. Iterative Combinatorial Auctions: Achieving Economic
and Computational Efficiency. PhD thesis, Department of Computer and Infor-
mation Science, University of Pennsylvania, 2001.

[Pedersen, 1991] T. Pedersen. Non-interactive and information-theoretic secure ver-
ifiable secret sharing. In J. Feigenbaum, editor, Advances in Cryptology - Proceed-
ings of the 11th Annual International Cryptology Conference (CRYPTO), volume
576 of Lecture Notes in Computer Science, pages 129–140. Springer, 1991.

[Sandholm, 2000] T. Sandholm. Issues in computational Vickrey auctions. Inter-
national Journal of Electronic Commerce, Special issue on Intelligent Agents for
Electronic Commerce, 4(3):107–129, 2000.

[Yao, 1986] A.C. Yao. How to generate and exchange secrets. In Proceedings of the
27th Symposium on Foundations of Computer Science (FOCS), pages 162–167.
IEEE Computer Society Press, 1986.

11


