Majority Graphs of Assignment Problems and Properties of Popular Random Assignments

Joint work with Felix Brandt and Martin Suderland

Johannes Hofbauer
Technische Universität München

16th AAMAS Conference
Sao Paulo, May 10, 2017
• 2 is more popular than 1
• An assignment is popular if no more popular assignment exists (Gärdenfors, 1975)
How to find popular assignments: the majority graph

- Directed (weighted) graph G
 - one vertex per assignment
 - majority margin as edge weights

- Popular assignments are **weak Condorcet winners** in the majority graph
 - do not have to exist...
 - ...but randomized versions exist
Popular random assignments

- **Random assignment**: probability distribution over assignments
- A random assignment is **popular** if no other random assignment is preferred by an expected majority of agents
 - existence guaranteed by Minimax Theorem (Kavitha et al., 2011)

- Computation only requires majority graph
 - Which assignment problems induce identical majority graphs?

- Set of popular random assignments is convex
 - When is there a unique popular random assignment?

- Popularity is incompatible with strong envy-freeness and strong strategyproofness (Aziz et al., 2013)
 - What about weak envy-freeness and weak strategyproofness?
Identical majority graphs: decomposition

- **Decomposition**: Partition houses H into maximal number of subsets H_1, \ldots, H_k s.t.
 \[H_i > H_j \iff i < j \]

- Two decompositions are **rotation equivalent** if one can be obtained from the other by rotation of H_1, \ldots, H_k

- **Theorem**: Two assignment problems induce identical majority graphs iff their decompositions are rotation equivalent
Identical majority graphs: decomposition

- **Theorem**: Two assignment problems induce identical majority graphs iff their decompositions are rotation equivalent.

- Check in poly. time if two assignment problems induce identical majority graphs.

- Check in poly. time if given majority graph is induced by some assignment problem.

- Rotation equivalent decompositions imply identical popular random assignments.

- Vast majority of profiles induce unique majority graph.
Uniqueness of popular random assignments

• Assumption: agents share identical preferences

• **Theorem**: A random assignment p is popular
 iff $p_{ij} = p_{i,j+2}$ for all i, j

 - Odd n: unique popular random assignment: $p_{ij} = \frac{1}{n}$
 - Even n: infinitely many popular random assignments, for $n = 4$ e.g. q and q'

\[
q = \begin{pmatrix}
\frac{1}{2} & 0 & \frac{1}{2} & 0 \\
\frac{1}{2} & 0 & \frac{1}{2} & 0 \\
0 & \frac{1}{2} & 0 & \frac{1}{2} \\
0 & \frac{1}{2} & 0 & \frac{1}{2}
\end{pmatrix}
\]

\[
q' = \begin{pmatrix}
\frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\
\frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\
\frac{5}{12} & \frac{5}{12} & \frac{5}{12} & \frac{1}{12} \\
0 & \frac{1}{2} & 0 & \frac{1}{2}
\end{pmatrix}
\]
Uniqueness of popular random assignments

- No obvious criterion for uniqueness

- Explicit computation infeasible for larger n
 - $\sim 10^{17}$ profiles for $n = 6$

- Computer experiments to gain an insight
 - preferences sampled by Impartial Culture or Spatial (2-dim euclidean)
 - 10 000 samples for each n

- Fraction of assignment problems admitting unique popular random assignment decreases exponentially in n
Popularity vs. envy-freeness

• **Strongly envy-free**: own assignment preferred to all other for all vNM fct.’s
 ‣ violated if someone’s assignment preferred according to some vNM fct.

• **Weakly envy-free**: no one’s assignment preferred to own for all vNM fct.’s
 ‣ violated if someone’s assignment preferred according to all vNM fct.’s

• Theorem (Aziz et al., 2013): Popularity and strong envy-freeness are incompatible for some assignment problem \((n \geq 3)\)

• **Theorem**: Popularity and weak envy-freeness are incompatible for some assignment problem \((n \geq 5)\)
Popularity vs. strategyproofness

- **Strongly strategyproof**: Truth-telling is preferred to lying for all vNM fct.’s
 - violated if manipulation possible for some vNM fct.

- **Weakly strategyproof**: Lying is never preferred to truth-telling (for all vNM fct.’s)
 - violated if manipulation possible for all vNM fct.’s

- Theorem (Aziz et al., 2013):
 Popularity and strong strategyproofness are incompatible ($n \geq 3$)

- Theorem: Popularity and weak strategyproofness are incompatible ($n \geq 7$)
Conclusion

• **Main contributions**
 ‣ equivalence theorem linking assignment problems and majority graphs
 ‣ analysis of uniqueness of popular random assignments
 ‣ solution to two open problems by Aziz et al. (2013) regarding weak envy-freeness and weak strategyproofness

• **Open problem**
 ‣ Does the impossibility for weak strategyproofness also hold for efficiency w.r.t. *pairwise comparison* instead of popularity?