Group-Strategyproof Irresolute Social Choice Functions

Felix Brandt
Technische Universität München

Theorem (Gibbard, 1973; Satterthwaite, 1975): A strategyproof resolute SCF is either imposed or dictatorial.

Preliminaries

- Each voter \(i \) has a complete preference relation \(R_i \) over a finite set of at least three alternatives.
- A social choice function (SCF) is a function that maps a preference profile to a non-empty subset of alternatives.
- An SCF \(f \) is resolute if \(|f(R)| = 1 \) for all preference profiles \(R \).
- An SCF is (weakly) strategyproof if no voter can obtain a more preferred outcome by misrepresenting his (strict) preferences.
- An SCF is group-strategyproof if no group of voters can obtain an outcome that all of them prefer to the original one.
- An SCF is pairwise if it only depends on the difference of the number of voters who prefer \(x \) to \(y \) and those who prefer \(y \) to \(x \) for every pair of alternatives \(x \) and \(y \).
 - Examples: Kemeny, Borda, Maximin, ranked pairs, all tournament solutions (Slater set, uncovered set, Banks set, minimal covering set, bipartisan set, TEQ, etc.)
- An SCF satisfies set-monotonicity if weakening unchosen alternatives has no effect on the choice set.

Related Work

- Theorem (Barbera, 1977; Kelly, 1977): Every strategyproof quasi-transitively rationalizable SCF is either imposed or dictatorial.
- However, quasi-transitive rationalizability itself is highly problematic.
 - e.g., Gibbard (1969), Schwartz (1972), Mas-Colell et al. (1972)
 - “one plausible interpretation of such a theorem is that, rather than demonstrating the impossibility of reasonable strategy-proof social choice functions, it is part of a critique of the regularity [rationalizability] conditions” (Kelly, 1977)
 - “whether a non-rationalizable collective choice rule exists which is not manipulable and always leads to non-empty choices for non-empty finite issues is an open question” (Barbera, 1977)
- Various negative results for stronger set extensions (e.g., Duggan and Schwartz, 2000)

Consequences & Discussion

- Our main result can be seen as an irresolute version of the Muller-Satterthwaite theorem.
- \(SP \) (strategyproofness): resistance vs. preference misrepresentation
 - \(PA \) (participation): resistance vs. abstention
 - \(SSP \) (strong superset property): resistance vs. adding/deleting losing alternatives
 - \(CC \) (composition consistency): resistance vs. cloning alternatives

Kelly’s Preference Extension

Underlying assumption: Nothing known about tie-breaking mechanism

\[X, R, Y \Rightarrow \forall x \in X, y \in Y: (x, y) \]

Example: \(\{a, b, c\} \)

Related Work

Proof of Theorem 1

- Theorem 1: No Condorcet extension is strategy-proof.
- Theorem 2: Every SCF that satisfies set-monotonicity is weakly group-strategyproof.
- Theorem 3: Every weakly strategyproof, pairwise SCF satisfies set-monotonicity.
- Corollary: A pairwise SCF is weakly group-strategyproof iff it satisfies set-monotonicity.