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ABSTRACT
While the Gibbard-Satterthwaite theorem states that ev-
ery non-dictatorial and resolute, i.e., single-valued, social
choice function is manipulable, it was recently shown that
a number of appealing irresolute Condorcet extensions are
strategyproof according to Kelly’s preference extension. In
this paper, we study whether these results carry over to
stronger preference extensions due to Fishburn and Gärden-
fors. For both preference extensions, we provide sufficient
conditions for strategyproofness and identify social choice
functions that satisfy these conditions, answering a question
by Gärdenfors [15] in the affirmative. We also show that
some more discriminatory social choice functions fail to sat-
isfy necessary conditions for strategyproofness.
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1. INTRODUCTION
One of the central results in social choice theory states

that every non-trivial social choice function (SCF)—a func-
tion mapping individual preferences to a collective choice—is
susceptible to strategic manipulation [17, 29]. However, the
classic result by Gibbard and Satterthwaite only applies to
resolute, i.e., single-valued, SCFs. This assumption has been
criticized for being unnatural and unreasonable [15, 22]. As
Taylor [34] puts it, “If there is a weakness to the Gibbard-
Satterthwaite theorem, it is the assumption that winners are
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unique.” For example, consider a situation with two agents
and two alternatives such that each agent prefers a different
alternative. The problem is not that a resolute SCF has to
select a single alternative (which is a well-motivated practi-
cal requirement), but that it has to select a single alternative
based on the individual preferences alone (see, e.g., [22]). As
a consequence, the SCF has to be biased towards an alter-
native or a voter (or both). Resoluteness is therefore at
variance with such elementary fairness notions as neutrality
(symmetry among the alternatives) and anonymity (symme-
try among the voters).

In order to remedy this shortcoming, Gibbard [18] went on
to characterize the class of strategyproof decision schemes,
i.e., aggregation functions that yield probability distribu-
tions over the set of alternatives rather than single alter-
natives (see also [19, 3]). This class consists of rather de-
generate decision schemes and Gibbard’s characterization is
therefore commonly interpreted as another impossibility re-
sult. However, Gibbard’s theorem rests on unusually strong
assumptions with respect to the voters’ preferences. In con-
trast to the traditional setup in social choice theory, which
typically only involves ordinal preferences, his result relies
on the axioms of von Neumann and Morgenstern [36] (or an
equivalent set of axioms) in order to compare lotteries over
alternatives. The gap between Gibbard and Satterthwaite’s
theorem for resolute SCFs and Gibbard’s theorem for de-
cision schemes has been filled by a number of impossibility
results for irresolute SCFs with varying underlying notions
of how to compare sets of alternatives with each other (e.g.,
[15, 1, 2, 22, 10, 5, 8, 28, 35]), many of which are surveyed
by Taylor [34] and Barberà [4].

How preferences over sets of alternatives relate to or de-
pend on preferences over individual alternatives is a funda-
mental issue that goes back to at least de Finetti [9] and
Savage [30]. In the context of social choice the alternatives
are usually interpreted as mutually exclusive candidates for a
unique final choice. For instance, assume an agent prefers a
to b, b to c, and—by transitivity—a to c. What can we
reasonably deduce from this about his preferences over the
subsets of {a, b, c}? It stands to reason to assume that he
would strictly prefer {a} to {b}, and {b} to {c}. If a sin-
gle alternative is eventually chosen from each choice set, it
is safe to assume that he also prefers {a} to {b, c} (Kelly’s
extension), but whether he prefers {a, b} to {a, b, c} already
depends on (his knowledge about) the final decision process.
In the case of a lottery over all pre-selected alternatives ac-
cording to a known a priori probability distribution with
full support, he would prefer {a, b} to {a, b, c} (Fishburn’s



extension). This assumption is, however, not sufficient to
separate {a, b} and {a, c}. Based on a sure-thing princi-
ple which prescribes that alternatives present in both choice
sets can be ignored, it would be natural to prefer the for-
mer to the latter (Gärdenfors’ extension). Finally, whether
the agent prefers {a, c} to {b} depends on his attitude to-
wards risk: he might hope for his most-preferred alternative
(leximax extension), fear that his worst alternative will be
chosen (leximin extension), or maximize his expected utility.

In general, there are at least three interdependent reasons
why it is important to get a proper conceptual hold and a
formal understanding of how preferences over sets relate to
preferences over individual alternatives.

Rationality constraints. The examples above show
that depending on the situation that is being modeled,
preferences over sets are subject to certain rationality con-
straints, even if the preferences over individual alternatives
are not. Not taking this into account would obviously be
detrimental to a proper understanding of the situation at
hand.

Epistemic and informational considerations. In
many applications preferences over all subsets may be un-
available, unknown, or at least harder to obtain than prefer-
ences over the individual alternatives. With a proper grasp
of how set preferences relate to preferences over alternatives,
however, one may still be able to extract important struc-
tural information about the set preferences. In a similar
vein, agents may not be fully informed about the situation
they are in, e.g., they may not know the kind of lottery by
means of which final choices are selected from sets. The less
the agents know about the selection procedure, the less may
be assumed about the structural properties of their prefer-
ences over sets.

Succinct representations. Clearly, as the set of sub-
sets grows exponentially in the number of alternatives, pref-
erences over subsets become prohibitively large. Hence, ex-
plicit representation and straightforward elicitation are not
feasible and the succinct representation of set preferences
becomes inevitable. Preferences over individual alternatives
are of linear size and are the most natural basis for any
succinct representation. Even when preferences over sets
are succinctly represented by more elaborate structures than
just preferences over individual alternatives, having a firm
conceptual grasp on how set preferences relate to preferences
over single alternatives is of crucial importance.

Any function that yields a preference relation over sub-
sets of alternatives when given a preference relation over
individual alternatives is called a preference extension or set
extension. How to extend preferences to subsets is a funda-
mental issue that pervades the mathematical social sciences
and has numerous applications in a variety of its disciplines.
One example given by Gärdenfors [16] is the following: “sup-
pose one only has ordinal information about the welfare of
the members of society. When is it possible to say that one
group of people is better off than another group?”

In this paper, we will be concerned with three of the most
well-known preference extensions due to Kelly [22], Fishburn
[14], and Gärdenfors [15]. On the one hand, we provide suf-
ficient conditions for strategyproofness and identify social
choice functions that satisfy these conditions. For example,
we show that the top cycle is strategyproof according to Gär-

denfors’ set extension, answering a question by Gärdenfors
[15] in the affirmative. On the other hand, we propose nec-
essary conditions for strategyproofness and show that some
more discriminatory social choice functions such as the min-
imal covering set and the bipartisan set, which have recently
been shown to be strategyproof according to Kelly’s exten-
sion, fail to satisfy strategyproofness according to Fishburn’s
and Gärdenfors’ extension. By means of a counter-example,
we also show that Gärdenfors [15] incorrectly claimed that
the SCF that returns the Condorcet winner when it exists
and all Pareto-undominated alternatives otherwise is strat-
egyproof according to Gärdenfors’ extension.

2. PRELIMINARIES
In this section, we provide the terminology and notation

required for our results.

2.1 Social Choice Functions
Let N = {1, . . . , n} be a set of voters with preferences over

a finite set A of alternatives. The preferences of voter i ∈ N
are represented by a complete and anti-symmetric preference
relation Ri ⊆ A×A.1 The interpretation of (a, b) ∈ Ri, usu-
ally denoted by a Ri b, is that voter i values alternative a
at least as much as alternative b. In accordance with con-
ventional notation, we write Pi for the strict part of Ri,
i.e., a Pi b if a Ri b but not b Ri a. As Ri is anti-symmetric,
a Pi b if and only if a Ri b and a 6= b. The set of all pref-
erence relations over A will be denoted by R(A). The set of
preference profiles, i.e., finite vectors of preference relations,
is then given by R∗(A). The typical element of R∗(A) will
be R = (R1, . . . , Rn).

The following notational convention will turn out to be
useful. For a given preference profile R with b Ri a, Ri:(a,b)

denotes the preference profile

Ri:(a,b) = (R1, . . . , Ri−1, Ri\{(b, a)}∪{(a, b)}, Ri+1, . . . , Rn).

That is, Ri:(a,b) is identical to R except that alternative a
is strengthened with respect to b within voter i’s preference
relation.

Our central object of study are social choice functions, i.e.,
functions that map the individual preferences of the voters
to a non-empty set of socially preferred alternatives.

Definition 1. A social choice function (SCF) is a function
f : R∗(A)→ 2A \ ∅.

An SCF f is said to be based on pairwise comparisons
(or simply pairwise) if, for all preference profiles R and R′,
f(R) = f(R′) whenever for all alternatives a, b,

|{i ∈ N | a Ri b}| − |{i ∈ N | b Ri a}|
= |{i ∈ N | a R′i b}| − |{i ∈ N | b R′i a}|.

In other words, the outcome of a pairwise SCF only de-
pends on the comparisons between pairs of alternatives (see,
e.g., [37, 38]).

1For most of our results, we do not assume transitivity of
preferences. In fact, Theorems 3 and 5 become stronger
but are easier to prove for general—possibly intransitive—
preferences. Theorems 4 and 6, on the other hand, become
slightly weaker because there exist SCFs that are only ma-
nipulable if intransitive preferences are allowed. For all the
manipulable SCFs in this paper, however, we show that they
are manipulable even if transitive preferences are required.
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Figure 1: Set-theoretic relationships between the choice sets of the SCFs considered in this paper. The choice
sets of SCFs that intersect in the diagram always intersect. The same is true for set-inclusions. Choice sets
of SCFs that are disjoint in the diagram may have an empty intersection, i.e., there exist instances where
the choice sets do not intersect.

For a given preference profile R = (R1, . . . , Rn), the ma-
jority relation RM ⊆ A×A is defined by a RM b if and only
if |{i ∈ N | a Ri b}| ≥ |{i ∈ N | b Ri a}|. Let PM denote
the strict part of RM . A Condorcet winner is an alternative
a that is preferred to any other alternative by a strict ma-
jority of voters, i.e., a PM b for all alternatives b 6= a. An
SCF is called a Condorcet extension if it uniquely selects the
Condorcet winner whenever one exists.

We will now introduce the SCFs considered in this paper.
With the exception of the Pareto rule and the omninomi-
nation rule, all of these SCFs are pairwise Condorcet exten-
sions. Set-theoretical relationships between these SCFs are
illustrated in Figure 1.

Pareto rule An alternative a is Pareto-dominated if there
exists an alternative b such that b Pi a for all voters
i ∈ N . The Pareto rule PAR returns all alternatives
that are not Pareto-dominated.

Omninomination rule The omninomination rule OMNI
returns all alternatives that are ranked first by at least
one voter.

Condorcet rule The Condorcet rule COND returns the
Condorcet winner if it exists, and all alternatives oth-
erwise.

Top Cycle Let R∗M denote the transitive closure of the ma-
jority relation, i.e., a R∗M b if and only if there exists
k ∈ N and a1, . . . , ak ∈ A with a1 = a and ak = b such
that ai RM ai+1 for all i < k. The top cycle rule TC
(also known as weak closure maximality, GETCHA,
or the Smith set) returns the maximal elements of
R∗M , i.e., TC (R) = {a ∈ A | a R∗M b for all b ∈ A}
[20, 33, 31].

Minimal Covering Set A subset C ⊆ A is called a cov-
ering set if for all alternatives b ∈ A \ C, there exists
a ∈ C such that a PM b and for all c ∈ C \{a}, b PM c
implies a PM c and c PM a implies c PM b. Dutta
[11] and Dutta and Laslier [12] have shown that there
always exists a unique minimal covering set. The SCF
MC returns exactly this set.

Bipartisan Set Consider the two-player zero-sum game in
which the set of actions for both players is given by A
and payoffs are defined as follows. If the first player
chooses a and the second player chooses b, the payoff

for the first player is 1 if a PM b, −1 if b PM a, and 0
otherwise. The bipartisan set BP contains all alterna-
tives that are played with positive probability in some
Nash equilibrium of this game [23, 12].

Observe that PAR and OMNI are only well-defined for tran-
sitive individual preferences.

2.2 Strategyproofness
An SCF is manipulable if one or more voters can misrep-

resent their preferences in order to obtain a more preferred
choice set. While comparing choice sets is trivial for reso-
lute SCFs, this is not the case for irresolute ones. Whether
one choice set is preferred to another depends on how the
preferences over individual alternatives are to be extended
to sets of alternatives.

In our investigation of strategyproof SCFs, we will con-
sider the following three well-known set extensions due to
Kelly [22], Fishburn [14],2 and Gärdenfors [15]. Let Ri be
a preference relation over A and X,Y ⊆ A two non-empty
subsets of A.

• X RK
i Y if and only if x Ri y for all x ∈ X and all

y ∈ Y [22]
One interpretation of this extension is that voters are
unaware of the mechanism (e.g., a lottery) that will be
used to pick the winning alternative [16].

• X RF
i Y if and only if x Ri y, x Ri z, and y Ri z for

all x ∈ X \ Y , y ∈ X ∩ Y , and z ∈ Y \X [14]
One interpretation of this extension is that the winning
alternative is picked by a lottery according to some
underlying a priori distribution and that voters are
unaware of this distribution [8]. Alternatively, one may
assume the existence of a tie-breaker with linear, but
unknown, preferences.

• X RG
i Y if and only if one of the following conditions

is satisfied [15]:

(i) X ⊂ Y and x Ri y for all x ∈ X and y ∈ Y \X
(ii) Y ⊂ X and x Ri y for all x ∈ X \ Y and y ∈ Y

(iii) neither X ⊂ Y nor Y ⊂ X and x Ri y for all
x ∈ X \ Y and y ∈ Y \X

2Gärdenfors [16] attributed this extension to Fishburn be-
cause it is the weakest extension that satisfies a certain set
of axioms proposed by Fishburn [14].



No interpretation in terms of lotteries is known for this
set extension. Gärdenfors [15] motivates it by allud-
ing to Savage’s sure-thing principle (when comparing
two options, identical parts may be ignored). Unfor-
tunately, the definition of this extension is somewhat
“discontinuous,” which is also reflected in the hardly
elegant characterization given in Theorem 5.

It is easy to see that these extensions form an inclusion hi-
erarchy.

Fact 1. For all preference relations Ri and subsets X,Y ⊆
A,

X RK
i Y implies X RF

i Y implies X RG
i Y .

For E ∈ {K,F,G}, let PE
i denote the strict part of RE

i . As
Ri is anti-symmetric, so is RE

i . Therefore, we have X PE
i Y

if and only if X RE
i Y and X 6= Y .

Based on these set extensions, we can now define three dif-
ferent notions of strategyproofness for irresolute SCFs. Note
that, in contrast to some related papers, we interpret pref-
erence extensions as fully specified (incomplete) preference
relations rather than minimal conditions on set preferences.

Definition 2. Let E ∈ {K,F,G}. An SCF f is PE-manip-
ulable by a group of voters C ⊆ N if there exist preference
profiles R and R′ with Rj = R′j for all j 6∈ C such that

f(R′) PE
i f(R) for all i ∈ C.

An SCF is PE-strategyproof if it is not PE-manipulable by
single voters. An SCF is PE-group-strategyproof if it is not
PE-manipulable by any group of voters.

Fact 1 implies that PG-group-strategyproofness is
stronger than PF -group-strategyproofness, which in turn is
stronger than PK-group-strategyproofness.

3. RELATED WORK
Barberà [1] and Kelly [22] have shown independently that

all non-trivial SCFs that are rationalizable via a quasi-tran-
sitive preference relation are PK-manipulable. However,
as witnessed by various other (non-strategic) impossibility
results that involve quasi-transitive rationalizability (e.g.,
[24]), it appears as if this property itself is unduly restrictive.
As a consequence, Kelly [22] concludes his paper by contem-
plating that “one plausible interpretation of such a theorem
is that, rather than demonstrating the impossibility of rea-
sonable strategy-proof social choice functions, it is part of a
critique of the regularity [rationalizability] conditions.”

Strengthening earlier results by Gärdenfors [15] and Tay-
lor [34], Brandt [6] showed that no Condorcet extension is
PK-strategyproof. The proof, however, crucially depends
on strategic tie-breaking and hence does not work for anti-
symmetric preferences. For this reason, only anti-symmetric
preferences are considered in the present paper.

Brandt [6] also provided a sufficient condition for PK-
group-strategyproofness. Set-monotonicity can be seen as
an irresolute variant of Maskin-monotonicity [25] and pre-
scribes that the choice set is invariant under the weakening
of unchosen alternatives.

Definition 3. An SCF f satisfies set-monotonicity (SET-
MON) if f(Ri:(a,b)) = f(R) for all preference profiles R,
voters i, and alternatives a, b with b 6∈ f(R).

Theorem 1 (Brandt [6]). Every SCF that satisfies SET-
MON is PK-group-strategyproof.

Set-monotonicity is a demanding condition, but a hand-
ful of SCFs such as the ones introduced in Section 2.1 are
known to be set-monotonic. For the class of pairwise SCFs,
this condition is also necessary, which shows that many
well-known SCFs such as Borda’s rule, Copeland’s rule, Ke-
meny’s rule, the uncovered set, and the Banks set are not
PK-group-strategyproof.

Theorem 2 (Brandt [6]). Every pairwise SCF that is PK-
group-strategyproof satisfies SET-MON.

Strategyproofness according to Kelly’s extension thus
draws a sharp line within the space of SCFs as almost all es-
tablished non-pairwise SCFs (such as plurality and all weak
Condorcet extensions like Young’s rule) are also known to
be PK-manipulable (see, e.g., [34]).

The state of affairs for Gärdenfors’ and Fishburn’s exten-
sions is less clear. Gärdenfors [15] has shown that COND
and OMNI are PG-group-strategyproof. In an attempt to
extend this result to more discriminatory SCFs, he also
claimed that COND ∩ PAR, which returns the Condorcet
winner if it exists and all Pareto-undominated alternatives
otherwise, is PG-strategyproof. However, we show that this
is not the case (Proposition 2). Gärdenfors concludes that
“we have not been able to find any more decisive function
which is stable [strategyproof] and satisfies minimal require-
ments on democratic decision functions.” We show that TC
is such a function (Corollary 1).

Apart from a theorem by Ching and Zhou [8], which uses
an unusually strong definition of strategyproofness, we are
not aware of any characterization result using Fishburn’s
extension. Feldman [13] has shown that the Pareto rule is
PF -strategyproof and Sanver and Zwicker [27] have shown
that the same is true for TC .

4. RESULTS
This section contains our results. All omitted proofs can

be found in the appendix.

4.1 Necessary and Sufficient Conditions for
Group-Strategyproofness

We first introduce a new property that requires that mod-
ifying preferences between chosen alternatives may only re-
sult in smaller choice sets. Set-monotonicity entails a con-
dition called independence of unchosen alternatives, which
states that the choice set is invariant under modifications of
the preferences between unchosen alternatives. Accordingly,
the new property will be called exclusive independence of
chosen alternatives, where “exclusive” refers to the require-
ment that unchosen alternatives remain unchosen.

Definition 4. An SCF f satisfies exclusive independence
of chosen alternatives (EICA) if f(R′) ⊆ f(R) for all pairs
of preference profiles R and R′ that differ only on alterna-
tives in f(R), i.e., Ri|{a,b} = R′i|{a,b} for all i ∈ N and all
alternatives a, b with b 6∈ f(R).

It turns out that, together with SET-MON, this new prop-
erty is sufficient for an SCF to be group-strategyproof ac-
cording to Fishburn’s preference extension.

Theorem 3. Every SCF that satisfies SET-MON and EICA
is PF -group-strategyproof.

For pairwise SCFs, the following weakening of EICA can
be shown to be necessary for group-strategyproofness ac-
cording to Fishburn’s extension. It prescribes that modify-



ing preferences among chosen alternatives does not result in
a choice set that is a strict superset of the original choice
set.

Definition 5. An SCF f satisfies weak EICA if f(R) 6⊂
f(R′) for all pairs of preference profiles R and R′ that differ
only on alternatives in f(R).

Theorem 4. Every pairwise SCF that is PF -group-strategy-
proof satisfies SET-MON and weak EICA.

We now turn to PG-group-strategyproofness. When com-
paring two sets, PG differs from PF only in the case when
neither set is contained in the other. The following definition
captures exactly this case.

Definition 6. An SCF f satisfies the symmetric difference
property (SDP) if either f(R) ⊆ f(R′) or f(R′) ⊆ f(R) for
all pairs of preference profiles R and R′ such that Ri|{a,b} =
R′i|{a,b} for all i ∈ N and all alternatives a, b with a ∈ f(R)\
f(R′) and b ∈ f(R′) \ f(R).

Theorem 5. Every SCF that satisfies SET-MON, EICA, and
SDP is PG-group-strategyproof.

As was the case for Fishburn’s extension, a set of necessary
conditions for pairwise SCFs can be obtained by replacing
EICA with weak EICA.

Theorem 6. Every pairwise SCF that is PG-group-strategy-
proof satisfies SET-MON, weak EICA, and SDP.

4.2 Consequences
We are now ready to study the strategyproofness of the

SCFs defined in Section 2. It can be checked that COND
and TC satisfy SET-MON, EICA, and SDP and thus, by
Theorem 5, are PG-group-strategyproof.

Corrollary 1. COND and TC are PG-group-
strategyproof.

OMNI , PAR, and COND ∩ PAR satisfy SET-MON and
EICA, but not SDP.

Corrollary 2. OMNI , PAR, and COND ∩ PAR are PF -
group-strategyproof.

As OMNI , PAR, and COND ∩PAR are not pairwise, the
fact that they violate SDP does not imply that they are
PG-manipulable. In fact, it turns out that OMNI is strate-
gyproof according to Gärdenfors’ extension, while PAR and
COND ∩ PAR are not.

Proposition 1. OMNI is PG-group-strategyproof.

Proposition 2. PAR and COND ∩ PAR are PG-manipu-
lable.

Proof. Consider the following profile R = (R1, R2, R3, R4).

R1 R2 R3 R4

c c a a
d d b b
b a c c
a b d d

It is easily verified that PAR(R) = {a, b, c}. Now let
R′ = (R′1, R2, R3, R4) where d R′1 c R′1 a R′1 b. Obvi-
ously, PAR(R′) = {a, c, d} and {a, c, d} PG

1 {a, b, c} because
d R1 b. I.e., the first voter can obtain a preferable choice set
by misrepresenting his preferences. As neither R nor R′ has
a Condorcet winner, the same holds for COND ∩ PAR.

Finally, we show that MC and BP violate weak EICA,
which implies that both rules are manipulable according to
Fishburn’s extension.

Corrollary 3. MC and BP are PF -manipulable.

Proof. By Theorem 4 and the fact that both MC and BP
are pairwise, it suffices to show that MC and BP violate
weak EICA. To this end, consider the following profile R =
(R1, R2, R3, R4, R5) and the corresponding majority graph
representing PM .

R1 R2 R3 R4 R5

d c b e d
e b c a c
a a e b a
b e a d b
c d d c e

c a

b

d e

It can be checked that MC (R) = BP(R) = {a, b, c}. De-
fine R′ = R1:(c,b), i.e., the first voter strengthens c with
respect to b. Observe that PM and P ′M disagree on the pair
{b, c}, and that MC (R′) = BP(R′) = {a, b, c, d, e}. Thus,
both MC and BP violate weak EICA and the first voter can
manipulate because {a, b, c, d, e} PF

1 {a, b, c}.

The same example shows that the tournament equilibrium
set [32] and the minimal extending set [7], both of which are
only defined for an odd number of voters and conjectured to
be PK-group-strategyproof, are PF -manipulable.

5. CONCLUSION
In this paper, we investigated the effect of various pref-

erence extensions on the manipulability of irresolute SCFs.
We proposed necessary and sufficient conditions for strat-
egyproofness according to Fishburn’s and Gärdenfors’ set
extensions and used these conditions to illuminate the strat-
egyproofness of a number of well-known SCFs. Our results
are summarized in Table 1. As mentioned in Section 3, some
of these results were already known or—in the case of PF -
strategyproofness of the top cycle—have been discovered in-
dependently by other authors. In contrast to the papers by
Gärdenfors [15], Feldman [13], and Sanver and Zwicker [27],
which more or less focus on particular SCFs, our axiomatic
approach yields unified proofs of most of the statements in
the table.3

Many interesting open problems remain. For example, it
is not known whether there exists a Pareto-optimal pairwise
SCF that is strategyproof according to Gärdenfors’ exten-
sion. Recently, the study of the manipulation of irresolute
SCFs by other means than untruthfully representing one’s
preferences—e.g., by abstaining the election [26, 21]—has
been initiated. For the set extensions considered in this pa-
per it is unknown which SCFs can be manipulated by absten-
tion. It would be desirable to also obtain characterizations
of these classes of SCFs and, more generally, to improve our
understanding of the interplay between both types of ma-
nipulation. For instance, it is not difficult to show that the
negative results in Corollary 3 also extend to manipulation
by abstention.

3The results in the leftmost column of Table 1 are due to
Brandt [6] and are included for the sake of completeness.



Table 1: Summary of results.

PK-strategyproof PF -strategyproof PG-strategyproof

OMNI X X Xa

COND X X Xa

TC X Xb X
PAR X Xc –
COND ∩ PAR X X –
MC X – –
BP X – –

aGärdenfors [15]
bSanver and Zwicker [27]
cFeldman [13]

Another interesting related question concerns the epis-
temic foundations of the above extensions. Most of the
literature in social choice theory focusses on well-studied
economic models where agents have full knowledge of a ran-
dom selection process, which is often assumed to be a lottery
with uniform probabilities. The study of more intricate dis-
tributed protocols or computational selection devices that
justify certain set extensions appears to be very promising.
For instance, Kelly’s set extension could be justified by a
distributed protocol for “unpredictable” random selections
that do not permit a meaningful prior distribution.
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APPENDIX
A. OMITTED PROOFS

A.1 Notation
For a preference relation Ri, let R←i denote the preference

relation where all preferences are reversed, i.e., a R←i b if and
only if b Ri a.

Furthermore, define the distance δ(Ri, R
′
i) between two

preference relations Ri and R′i as the number of (unordered)
pairs of alternatives on which they disagree. As preference
relations are complete and anti-symmetric, δ(Ri, R

′
i) = |Ri\

R′i| = |R′i\Ri|. The distance between two preference profiles
R and R′ of length n is defined as δ(R,R′) =

∑n
i=1 δ(Ri, R

′
i).

A.2 Proof of Theorem 3
We first need a lemma, which states that EICA together

with SET-MON implies the following: if only preferences be-
tween chosen alternatives are modified and some alternatives
leave the choice set, then at least one of them was weakened
with respect to an alternative that remains chosen.

Lemma 1. Let f be an SCF that satisfies SET-MON and
EICA and consider a pair of profiles R,R′ that differ only
on alternatives in f(R). If f(R′) ⊂ f(R), then there exist
i ∈ N , x ∈ f(R) \ f(R′) and y ∈ f(R′) such that x Ri y and
y R′i x.

Proof. Assume for contradiction that f(R′) ⊂ f(R) and R′\
R =

⋃
i∈N (R′i \ Ri) does not contain a pair (y, x) with y ∈

f(R′) and x ∈ f(R) \ f(R′). Then each pair (y, x) ∈ R′ \R
belongs to exactly one of the following two classes.

Class 1. y, x ∈ f(R′)

Class 2. y ∈ f(R) \ f(R′), x ∈ A
We now start with preference profile R′ and change the

preferences in R′ \R one after the other to arrive at profile
R. We first change the preferences for all pairs (y, x) from
Class 1 and denote the resulting profile by R′′. As R′ and
R′′ differ only on alternatives in f(R′), EICA implies that
f(R′′) ⊆ f(R′). We then change the preferences for all pairs
(y, x) from Class 2. By definition, the resulting profile is R.
As f(R′′) ⊆ f(R′), y /∈ f(R′) implies y /∈ f(R′′). Thus, in
this second step, only alternatives y /∈ f(R′′) are weakened
and SET-MON implies that f(R) = f(R′′). But f(R) =
f(R′′) ⊆ f(R′) contradicts the assumption that f(R′) is a
strict subset of f(R).

Theorem 3. Every SCF that satisfies SET-MON and EICA
is PF -group-strategyproof.

Proof. Let f be an SCF that satisfies SET-MON and EICA
and assume for contradiction that f is not PF -group-
strategyproof. Then, there have to be a group of vot-
ers C ⊆ N and two preference profiles R and R′ with
Rj = R′j for all j 6∈ C such that f(R′) PF

i f(R) for all
i ∈ C. We choose R and R′ such that δ(R,R′) is minimal,
i.e., we look at a “smallest” counter-example in the sense
that R and R′ coincide as much as possible. Let f(R) = X
and f(R′) = Y . We may assume δ(R,R′) > 0 as otherwise
R = R′ and X = Y . Now, consider a pair of alternatives
a, b ∈ A such that, for some i ∈ C, a Ri b and b R′i a, i.e.,
voter i misrepresents his preference relation by strengthen-
ing b. The following argument will show that no such a and
b exist, which implies that R and R′ and consequently X
and Y are identical, a contradiction. We need the following
two claims.

Claim 1. b ∈ Y
In order to prove this claim, suppose that b 6∈ Y . It fol-

lows from SET-MON that f(R′i:(a,b)) = f(R′) = Y . Thus,

R and R′i:(a,b) constitute a smaller counter-example since

δ(R,R′i:(a,b)) = δ(R,R′)−1. This is a contradiction because

δ(R,R′) was assumed to be minimal.

Claim 2. a ∈ Y
The following case distinction shows that Claim 2 holds.

Suppose a 6∈ Y . If a 6∈ X either, SET-MON implies that
f(Ri:(b,a)) = f(R) = X. Thus, Ri:(b,a) and R′ constitute a
smaller counter-example since δ(Ri:(b,a), R

′) = δ(R,R′)− 1.
On the other hand, if a ∈ X \Y , b ∈ Y and a Ri b contradict
the assumption that Y PF

i X.
We thus have {a, b} ⊆ Y for every pair (a, b) such that

some voter i ∈ C misrepresents his preference between a
and b. In particular, this means that R and R′ differ only



on alternatives in Y = f(R′). Therefore, Lemma 1 implies4

that either X = Y or X ⊂ Y and there exist y ∈ Y \X and
x ∈ X such that y R′i x and x Ri y. Both cases contradict
the assumption that Y PF

i X.
Hence, we have shown that no such R and R′ exist, which

concludes the proof.

Note that the preferences of voter i in the profile Ri:(b,a)

might not be transitive. Therefore, one has to be careful
when applying the preceding proof to PAR and OMNI , as
those SCFs are only defined for transitive preferences. One
can however generalize the definition of both SCFs to intran-
sitive preference profiles in such a way that all arguments in
the proof remain valid.5

A.3 Proof of Theorem 4
Theorem 4. Every pairwise SCF that is PF -group-strategy-
proof satisfies SET-MON and weak EICA.

Proof. We need to show that every pairwise SCF that vio-
lates either SET-MON or weak EICA is PF -manipulable.

First, let f be a pairwise SCF that violates SET-MON.6

Then, there exist a preference profile R = (R1, . . . , Rn), a
voter i, and two alternatives a, b with b Ri a and b 6∈ f(R) =
X such that f(Ri:(a,b)) = Y 6= X.

Let Rn+1 be a preference relation such that b Rn+1 a
and Y PF

n+1X (such a relation exists because b /∈ X) and
let Rn+2 = R←n+1. Let S denote the preference profile S =
(R1, . . . , Rn, Rn+1, Rn+2). It follows from the definition of
pairwise SCFs that f(S) = f(R) = X and f(Sn+1:(a,b)) =
f(Ri:(a,b)) = Y .

As Y PF
n+1 X, we have that f can be manipulated by

voter n+ 1 at preference profile S by misstating his prefer-
ence b Rn+1 a as a Rn+1 b. Hence, f is PF -manipulable.

Second, let f be a pairwise SCF that violates weak EICA.
Then, there exist two preference profiles R = (R1, . . . , Rn)
and R′ = (R′1, . . . , R

′
n) that differ only on alternatives in

f(R), such that f(R) = X ⊂ Y = f(R′). Let C ⊆ N
be the group of voters that have different preferences in R
and R′, i.e., C = {i ∈ N | Ri 6= R′i}. Without loss of
generality, we can assume that C = {1, . . . , c}, where c =
|C|. For all i ∈ {1, . . . , c}, let Rn+i be a preference relation
such that Y PF X and Ri \ R′i ⊆ Rn+i (such a preference
relation exists because X ⊂ Y and Ri \ R′i ⊆ X × X) and
let Rn+c+i = R←n+i. Furthermore, for all i ∈ {1, . . . , c}, let
R′n+i = Rn+i \ Ri ∪ R′i. I.e., R′n+i differs from Rn+i on
exactly the same pairs of alternatives as R′i differs from Ri.

4Observe that we apply Lemma 1 with f(R) = Y and
f(R′) = X.
5To see this, define OMNI (R) to contain all those alterna-
tives a for which there exists a voter i with a Ri b for all
b 6= a. The definition of PAR can remain unchanged. Gen-
eralized in this way, the choice set of either function may be
empty for intransitive preferences. It can however easily be
shown that PAR and OMNI still satisfy SET-MON in the
case of non-empty choice sets. As the sets X and Y used
in the proof of Theorem 3 are non-empty, the latter condi-
tion is then sufficient for the argument in the proof to go
through.
6Brandt [6] has shown that this implies PK-manipulability
in a setting where ties are allowed.

Consider the preference profiles

S = (R1, . . . , Rn, Rn+1, . . . , Rn+c, Rn+c+1, . . . , Rn+2c) and

S′ = (R1, . . . , Rn, R
′
n+1, . . . , R

′
n+c, Rn+c+1, . . . , Rn+2c).

It follows from the definition of pairwise SCFs that f(S) =
f(R) = X and f(S′) = f(R′) = Y . As Y PF

n+i X for all i ∈
{1, . . . , c}, we have that f can be manipulated by the group
{n+ 1, . . . , n+ c} at preference profile S by misstating their
preferences Rn+i as R′n+i. Hence, f is PF -manipulable.

A.4 Proof of Theorem 5
Theorem 5. Every SCF that satisfies SET-MON, EICA, and
SDP is PG-group-strategyproof.

Proof. Let f be an SCF that satisfies SET-MON, EICA, and
SDP, and assume for contradiction that f is not PG-group-
strategyproof. Then, there have to be a group of voters C ⊆
N and two preference profiles R and R′ with Rj = R′j for

all j 6∈ C such that f(R′) PG
i f(R) for all i ∈ C. Choose R

and R′ such that δ(R,R′) is minimal and let X = f(R) and
Y = f(R′).

As PG coincides with PF on all pairs where one set is
contained in the other set, and, by Theorem 3, f is PF -
group-strategyproof, we can conclude that neither X ⊆ Y
nor Y ⊆ X. Thus, SDP implies that there exist pairs (x, y)
with x ∈ X \ Y and y ∈ Y \ X such that some voters
have modified their preference between x and y, i.e., (x, y) ∈
(Ri \ R′i) ∪ (R′i \ Ri) for some i ∈ C. Each such pair (x, y)
thus belongs to at least one of the following two classes:

Class 1. (x, y) ∈ Ri \R′i for some i ∈ C
Class 2. (x, y) ∈ R′i \Ri for some i ∈ C

We go on to show that Class 1 contains at least one
pair. Assume for contradiction that all pairs belong to
Class 2 and let (x, y) ∈ R′i \ Ri be one of these pairs. As
x 6∈ Y , SET-MON implies that f(R′i:(y,x)) = f(R′) = Y .

As f(R′i:(y,x)) P
G
i f(R) for all i ∈ C and δ(R,R′i:(y,x)) =

δ(R,R′) − 1, R and R′i:(y,x) constitute a smaller counter-

example, contradicting the minimality of δ(R,R′).
Thus, there is at least one pair (x, y) that belongs to

Class 1, i.e., a pair (x, y) with x ∈ X \Y and y ∈ Y \X such
that x Ri y for some voter i ∈ C. But this contradicts the
assumption that Y PG

i X for all i ∈ C, and completes the
proof.

A.5 Proof of Theorem 6
Theorem 6. Every pairwise SCF that is PG-group-strategy-
proof satisfies SET-MON, weak EICA, and SDP.

Proof. By Theorem 4 and the fact that PG-group-strategy-
proofness implies PF -group-strategyproofness, it remains to
be shown that every pairwise SCF that violates SDP is PG-
manipulable. Suppose that f is pairwise and violates SDP.
Then, there exists two preference profiles R = (R1, . . . , Rn)
and R′ = (R′1, . . . , R

′
n) such that X = f(R) and Y = f(R′)

are not contained in one another, and Ri|{x,y} = R′i|{x,y}
for all i ∈ N and all alternatives x, y with x ∈ X \ Y and
y ∈ Y \X.

The proof now works analogously as the proof of Theo-
rem 4. For each voter i with Ri 6= R′i we have two new voters
Rn+i and Rn+c+i such that Y PG

n+i X, Ri \R′i ⊆ Rn+i, and
Rn+c+i = R←n+i. By letting R′n+i = Rn+i \ Ri ∪ R′i and



defining S and S′ as in the proof of Theorem 4, we can show
that f is PG-manipulable.

A.6 Proof of Corollary 1
Corrollary 1. COND and TC are PG-group-strategy-
proof.

Proof. By Theorem 5, it is sufficient to show that COND
and TC satisfy SET-MON, EICA, and SDP.

If a preference profile R does not have a Condorcet win-
ner, COND trivially satisfies the three properties because all
alternatives are chosen. If R has a Condorcet winner, EICA
is again trivial and SET-MON and SDP are straightforward.

The (easy) fact that TC satisfies SET-MON was shown
by Brandt [6]. To see that TC satisfies EICA, consider b 6∈
TC (R). By definition of TC , b R∗M a for no a ∈ TC (R).
As R and R′ differ only on alternatives in TC (R), it follows
that b R′∗M a for no a ∈ TC (R), and thus a 6∈ TC (R′).

Finally, to see that TC satisfies SDP, observe that a PM b
for all a ∈ TC (R) and b 6∈ TC (R). Thus, if x ∈ TC (R) \
TC (R′) and y ∈ TC (R′) \ TC (R), we have x PM y and
y P ′M x. This implies that at least one voter has modified
his preference between x and y.

A.7 Proof of Corollary 2
Corrollary 2. COND ∩ PAR and PAR are PF -group-
strategyproof.

Proof. By Theorem 3, it is sufficient to show that COND ∩
PAR and PAR satisfy SET-MON and EICA.

SET-MON holds because a Pareto-dominated alterna-
tive remains Pareto-dominated when it is weakened. For
EICA, observe that transitivity of Pareto-dominance im-
plies that each Pareto-dominated alternative is dominated
by a Pareto-undominated one. Therefore, if a 6∈ PAR(R)
and R and R′ differ only on alternatives in PAR(R), then
a /∈ PAR(R′) because a is still Pareto-dominated by the
same alternative.

A.8 Proof of Proposition 1
Proposition 1. OMNI is PG-group-strategyproof.

Proof. Assume for contradiction that OMNI is not PG-
group-strategyproof. Then, there have to be a group of
voters C ⊆ N and two preference profiles R and R′ with
Rj = R′j for all j /∈ C such that OMNI (R′) PG

i OMNI (R)
for all i ∈ C. Denote X = OMNI (R) and Y = OMNI (R′).

As PG coincides with PF on all pairs where one set is
contained in the other set, and, by Theorem 3, OMNI is PF -
group-strategyproof, we can conclude that neither X ⊆ Y
nor Y ⊆ X. Choose x ∈ X \ Y and y ∈ Y \ X arbitrarily.
On the one hand, x ∈ X \Y implies the existence of a voter
i ∈ C with x Ri a for all a 6= x. On the other hand, Y PG

i X
implies y Ri x, a contradiction.

B. TRANSITIVITY OF PREFERENCE EX-
TENSIONS

Throughout this section, we assume that R is a transitive
asymmetric preference relation on A. For a subset B ⊆ A,
let max(B) be the maximal element in B according to R,
i.e., max(B) R b for all b ∈ B.

Proposition 2. The following statements hold.

(i) RK is transitive.

(ii) RF is transitive.

(iii) RG is not transitive (and not even quasi-transitive).

Proof. (i) By definition of PK .

(ii) Lots of case distinctions...

(iii) Let A = {a, b, c, d} and a R b R c R d. Then {a, c} PG

{b, c} and {b, c} PG {b, d}, but not {a, c} PG {b, d}.

Lemma 2. Let X,Y be two non-empty subsets of A.

(i) X PG Y implies max(X) R max(Y ).

(ii) If Y is a singleton, then X PG Y implies max(X) P
max(Y ).

Proof. Easy.

Proposition 3. PG is acyclic.

Proof. Define a PG-cycle as a tuple C = (B1, B2, . . . , Bk)
with Bi+1 PG Bi for all i < k and Bk = B1. Lemma 2
(i) implies that max(Bi+1) R max(Bi) for all i < k. As
Bk = B1, this means that all the sets in the cycle have
a common maximum, i.e., there exists aC ∈

⋂k
i=1Bi with

max(Bi) = aC for all i ≤ k.
Let s(C) denote the size of the smallest set in C, i.e.,

s(C) = mini≤k |Bi|. We will show by induction on s(C)
that no PG-cycle C exists.

If s(C) = 1, Bi is a singleton for at least one i with i > 1.
Thus Lemma 2 (ii) implies that max(Bi−1) P max(Bi), a
contradiction.

If s(C) > 1, each set Bi contains at least two alternatives
and the definition of PG implies that Bi+1 \ {ac} PG Bi \
{aC} for all i < k. Therefore, we have found a PG-cycle

C′ = (B1 \ {aC}, B2 \ {aC}, . . . , Bk \ {aC})

with s(C′) = s(C)−1. In virtue of the induction hypothesis,
we are done.


