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Abstract. Given a binary dominance relation on a set of alternatives,
a common thread in the social sciences is to identify subsets of alterna-
tives that satisfy certain notions of stability. Examples can be found in
areas as diverse as voting theory, game theory, and argumentation the-
ory. Brandt and Fischer [4] proved that it is NP-hard to decide whether
an alternative is contained in some inclusion-minimal unidirectional (i.e.,
either upward or downward) covering set. For both problems, we raise
this lower bound to the Θp

2 level of the polynomial hierarchy and provide
a Σp

2 upper bound. Relatedly, we show that a variety of other natu-
ral problems regarding minimal or minimum-size unidirectional covering
sets are hard or complete for either of NP, coNP, and Θp

2 . An important
consequence of our results is that neither minimal upward nor minimal
downward covering sets (even when guaranteed to exist) can be com-
puted in polynomial time unless P = NP. This sharply contrasts with
Brandt and Fischer’s result that minimal bidirectional covering sets are
polynomial-time computable.

1 Introduction

A common thread in the social sciences is to identify sets of alternatives that
satisfy certain notions of stability according to some binary dominance relation.
Applications range from cooperative to noncooperative game theory, from social
choice theory to argumentation theory, and from multi-criteria decision analysis
to sports tournaments (see, e.g., [15, 4] and the references therein).

In social choice settings, the most common dominance relation is the pair-
wise majority relation, where an alternative x is said to dominate another al-
ternative y if the number of individuals preferring x to y exceeds the number
of individuals preferring y to x. McGarvey [16] proved that every asymmetric
dominance relation can be realized via a particular preference profile, even if the
individual preferences are linear. For example, Condorcet’s well-known paradox
says that the majority relation may contain cycles and thus does not always have
maximal elements, even if all of the underlying individual preferences do. This



means that the concept of maximality is rendered useless in many cases, which
is why various so-called solution concepts have been proposed. Solution concepts
can be used in place of maximality for nontransitive relations (see, e.g., [15]).
In particular, concepts based on so-called covering relations—transitive subrela-
tions of the dominance relation at hand—have turned out to be very attractive
[11, 17, 9].

Computational social choice, an emerging new field at the interface of social
choice theory, economics, and computer science, focuses on the computational
properties of social-choice-related concepts and problems [7]. In this paper, we
study the computational complexity of problems related to the notions of up-
ward and downward covering sets in dominance graphs. An alternative x is said
to upward cover another alternative y if x dominates y and every alternative
dominating x also dominates y. The intuition is that x “strongly” dominates y
in the sense that there is no alternative that dominates x but not y. Similarly,
an alternative x is said to downward cover another alternative y if x dominates
y and every alternative dominated by y is also dominated by x. The intuition
here is that x “strongly” dominates y in the sense that there is no alternative
dominated by y but not by x. A minimal upward or minimal downward covering
set is defined as an inclusion-minimal set of alternatives that satisfies certain no-
tions of internal and external stability with respect to the upward or downward
covering relation [9, 4].

Recent work in computational social choice has addressed the computational
complexity of most solution concepts proposed in the context of binary domi-
nance (see, e.g., [21, 1, 8, 5, 4, 6]). Brandt and Fischer [4] have shown NP-hardness
of deciding whether an alternative is contained in some minimal upward (respec-
tively, downward) covering set. For both problems, we raise their NP-hardness
lower bounds to the Θp2 level of the polynomial hierarchy, and we provide an up-
per bound of Σp

2 . We also analyze the complexity of a variety of other problems
related to minimal and minimum-size upward and downward covering sets that
have not been studied before. In particular, we provide hardness and complete-
ness results for the complexity classes NP, coNP, and Θp2 . Remarkably, these new
results imply that neither minimal upward covering sets nor minimal downward
covering sets (even when guaranteed to exist) can be found in polynomial time
unless P = NP. This sharply contrasts with Brandt and Fischer’s result that
minimal bidirectional covering sets are polynomial-time computable [4]. Note
that, notwithstanding the hardness of computing minimal upward covering sets,
the decision version of this search problem is trivially in P: Every dominance
graph always contains a minimal upward covering set.

Our Θp2-hardness results apply Wagner’s method [20]. To the best of our
knowledge, our constructions for the first time apply his method to problems
defined in terms of minimality rather than minimum size of a solution.

2 Definitions and Notation

We now define the necessary concepts from social choice and complexity theory.



Let A be a finite set of alternatives, let B ⊆ A, and let � ⊆ A×A be a
dominance relation on A, i.e., � is asymmetric and irreflexive (in general, �
need not be transitive or complete).4 A dominance relation � on a set A of
alternatives can be conveniently represented as a dominance graph, denoted by
(A,�), whose vertices are the alternatives from A, and for each x, y ∈ A there is
a directed edge from x to y if and only if x � y. For any two alternatives x and
y in B, define the following covering relations (see, e.g., [11, 17, 3]): x upward
covers y in B, denoted by xCBu y, if x � y and for all z ∈ B, z � x implies
z � y, and x downward covers y in B, denoted by xCBd y, if x � y and for all
z ∈ B, y � z implies x � z. When clear from the context, we omit mentioning
“in B” explicitly.

Definition 1. Let A be a set of alternatives, let B ⊆ A be any subset, and let
� be a dominance relation on A. The upward uncovered set of B is defined as
UCu(B) = {x ∈ B | y CBu x for no y ∈ B}, whereas the downward uncovered
set of B is defined as UCd(B) = {x ∈ B | y CBd x for no y ∈ B}.

In the dominance graph (A,�) in Figure 1, b upward covers c in A, and a
downward covers b in A (i.e., bCAu c and aCAd b), so UCu(A) = {a, b, d} is the
upward uncovered set and UCd(A) = {a, c, d} is the downward uncovered set of
A. For both the upward and the downward covering relation (henceforth uni-
directional covering relations), transitivity of the relation implies nonemptiness
of the corresponding uncovered set for each nonempty set of alternatives. The
intuition underlying covering sets is that there should be no reason to restrict
the selection by excluding some alternative from it (internal stability) and there
should be an argument against each proposal to include an outside alternative
into the selection (external stability).

Definition 2. Let A be a set of alternatives and � be a dominance relation
on A. A subset B ⊆ A is an upward covering set of A if UCu(B) = B (internal
stability) and for all x ∈ A − B, x 6∈ UCu(B ∪ {x}) (external stability). Down-
ward covering sets are defined analogously using UCd. An upward (respectively,
a downward) covering set M is said to be (inclusion-)minimal if no M ′ ⊂M is
an upward (respectively, a downward) covering set for A.

Every upward uncovered set contains one or more minimal upward covering
sets, whereas minimal downward covering sets do not always exist [4]. Dutta [9]
proposed minimal covering sets in the context of tournaments, i.e., complete
dominance relations, where both notions of covering coincide. Minimal unidi-
rectional covering sets are one of several possible generalizations to incomplete
dominance relations (see [4]). Occasionally, it might be helpful to specify the
dominance relation explicitly to avoid ambiguity. In such cases we refer to the
dominance graph and write, e.g., “M is an upward covering set for (A,�).” The
unique minimal upward covering set for the dominance graph shown in Figure 1
is {b, d}, and the unique minimal downward covering set is {a, c, d}.
4 For alternatives x and y, x � y (alternatively, (x, y) ∈ �) is interpreted as x being

strictly preferred to y (we say “x dominates y”), e.g., due to a strict majority of
voters preferring x to y.
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Fig. 1. Dominance graph (A,�) as an example for upward and downward covering
relations.

One computational problem of central interest in this paper is Minimal Up-
ward Covering Set Member (MCu-Member, for short): Given a set of alter-
natives A, a dominance relation � on A, and a distinguished element d ∈ A,
is d contained in some minimal upward covering set for A? Another important
problem is the search problem MCu-Find: Given a set of alternatives A and
a dominance relation � on A, find a minimal upward covering set for A. The
problems MCd-Member and MCd-Find are defined analogously for minimal
downward covering sets.

We assume that the reader is familiar with the basic notions of complexity
theory, such as polynomial-time many-one reducibility and the related notions
of hardness and completeness, and also with standard complexity classes such as
P, NP, coNP, and the polynomial hierarchy (see, e.g., [18]). In particular, coNP
is the class of sets whose complements are in NP. Σp

2 = NPNP, the second level
of the polynomial hierarchy, consists of all sets that can be solved by an NP
oracle machine that has access (in the sense of a Turing reduction) to an NP
oracle set such as SAT. SAT denotes the satisfiability problem of propositional
logic, which is one of the standard NP-complete problems (see, e.g., Garey and
Johnson [12]) and is defined as follows: Given a boolean formula in conjunctive
normal form, does there exist a truth assignment to its variables that satisfies
the formula? Papadimitriou and Zachos [19] introduced the class of problems
solvable in polynomial time via asking O(log n) sequential Turing queries to NP.
This class is also known as the Θp2 level of the polynomial hierarchy, and has been
shown to coincide with the class of problems that can be decided by a P machine
that accesses its NP oracle in a parallel manner. Equivalently, Θp2 is the closure of
NP under polynomial-time truth-table reductions. It follows immediately from
the definitions that P ⊆ NP ∩ coNP ⊆ NP ∪ coNP ⊆ Θp2 ⊆ Σp

2 . The class
Θp2 captures the complexity of various optimization problems [20]. In the field
of computational social choice, the winner problems for Dodgson, Young, and
Kemeny elections have been shown to be Θp2-complete (see [10] and the references
cited therein).

3 Results and Discussion

Results. Brandt and Fischer [4] proved that it is NP-hard to decide whether a
given alternative is contained in some minimal unidirectional covering set. Using
the notation of this paper, their results state that the problems MCu-Member
and MCd-Member are NP-hard. The question of whether these problems are



NP-complete or of higher complexity was left open. Our contribution is (i) to
raise Brandt and Fischer’s NP-hardness lower bounds for MCu-Member and
MCd-Member to Θp2-hardness and to provide (simple) Σp

2 upper bounds for
these problems, and (ii) to extend the techniques we developed to also apply
to various other covering set problems that will be defined in Section 6 and in
particular to the search problems. Due to space constraints we focus here on
our results for MCu-Member and MCu-Find but we mention that we obtained
many more results on upward and downward covering set problems (see The-
orem 9 and Table 1 in Section 6) the proofs of which are provided in the full
version of this paper [2].

Discussion. We consider the problem of finding a minimal unidirectional cover-
ing set (MCu-Find and MCd-Find) to be particularly important and natural.

Regarding upward covering sets, we stress that our result that, assuming
P 6= NP, MCu-Find is hard to compute (Theorem 8) does not follow directly
from the NP-hardness of MCu-Member in an obvious way.5 Our reduction that
raises the lower bound of MCu-Member from NP-hardness to Θp2-hardness,
however, allows us to prove that MCu-Find is not polynomial-time solvable
unless P = NP.

Regarding downward covering sets, the hardness of MCd-Find (assuming
P 6= NP) is an immediate consequence of Brandt and Fischer’s result that it is
NP-complete to decide whether there exists a minimal downward covering set [4,
Thm. 9]. We provide an alternative proof based on our reduction showing that
MCd-Member is Θp2-hard [2, Thm. 5.13]. In contrast to Brandt and Fischer’s
proof, our proof shows the hardness of MCd-Find even when the existence of a
(minimal) downward covering set is guaranteed.

As mentioned above, the problem MCu-Member was already known to be
NP-hard [4] and is here shown to be even Θp2-hard. One may naturally wonder
whether raising its (or any problem’s) lower bound from NP-hardness to Θp2-
hardness gives us any more insight into the problem’s inherent computational
complexity. After all, P = NP if and only if P = Θp2 . However, this question is
a bit more subtle than that and has been discussed carefully by Hemaspaandra
et al. [14]. They make the case that the answer to this question crucially de-
pends on what one considers to be the most natural computational model. In
particular, they argue that raising NP-hardness to Θp2-hardness potentially (i.e.,
unless longstanding open problems regarding the separation of the corresponding
complexity classes could be solved) is an improvement in terms of randomized
polynomial time and in terms of unambiguous polynomial time [14].

5 The decision version of MCu-Find is: Given a dominance graph, does it contain
a minimal upward covering set? However, this question has always an affirmative
answer, so this problem is trivially in P. Note also that MCu-Find is no harder (with
respect to “polynomial-time disjunctive truth-table” reductions) than the search
version of MCu-Member. The converse, however, is not at all obvious. Brandt and
Fischer’s results only imply the hardness of finding an alternative that is contained
in all minimal upward covering sets [4].



4 Upward Covering Constructions and Their Key
Properties

In this section, we provide the constructions and their key properties to be used
in Sections 5 and 6 to prove lower bounds for problems such as MCu-Member.

Construction 1 (to be used for showing coNP-hardness of
MCu-Member). Given a boolean formula in conjunctive normal form,
ϕ(w1, w2, . . . , wk) = f1∧f2∧· · ·∧f`, over the set W = {w1, w2, . . . , wk} of vari-
ables, we construct a set of alternatives A = {ui, ui, u′i, u′i | wi ∈W} ∪ {ej , e′j |
fj is a clause in ϕ} ∪ {a1, a2, a3}, and a dominance relation � on A that is
defined by: (i) for each i, 1 ≤ i ≤ k, there is a cycle ui � ui � u′i � u′i � ui;
(ii) if variable wi occurs in clause fj as a positive literal, then ui � ej, ui � e′j,
ej � ui, and e′j � ui; (iii) if variable wi occurs in clause fj as a negative literal,
then ui � ej, ui � e′j, ej � ui, and e′j � ui; (iv) if variable wi does not occur in
clause fj, then ej � u′i and e′j � u′i; (v) for each j, 1 ≤ j ≤ `, we have a1 � ej
and a1 � e′j; and (vi) there is a cycle a1 � a2 � a3 � a1.

Figures 2(a)–2(c) show some parts of the dominance graph that results from
the given formula ϕ. As a more complete example, Figure 2(d) shows the entire
dominance graph that corresponds to the concrete formula (¬w1 ∨ w2) ∧ (w1 ∨
¬w3), which can be satisfied by setting, for example, each of w1, w2, and w3 to
true. A minimal upward covering set for A corresponding to this assignment is
M = {u1, u

′
1, u2, u

′
2, u3, u

′
3, a1, a2, a3}. Note that neither e1 nor e2 occurs in M ,

and none of them occurs in any other minimal upward covering set for A either.
For alternative e1 in the example shown in Figure 2(d) this can be seen as follows.
If there were a minimal upward covering set M ′ for A containing e1 (and thus
also e′1, since they both are dominated by the same alternatives) then neither
u1 nor u2 (which dominate e1) must upward cover e1 in M ′, so all alternatives
corresponding to the variables w1 and w2 (i.e., {ui, ui, u′i, u′i | i ∈ {1, 2}}) would
also have to be contained in M ′. Due to e1 � u′3 and e′1 � u′3, all alternatives
corresponding to w3 (i.e., {u3, u3, u

′
3, u
′
3}) are in M ′ as well. Consequently, e2

and e′2 are no longer upward covered and must also be in M ′. The alternatives
a1, a2, and a3 are contained in every minimal upward covering set for A. But
then M ′ is not minimal because the upward covering set M , which corresponds
to the satisfying assignment stated above, is a strict subset of M ′. Hence, e1
cannot be contained in any minimal upward covering set for A.

We now list some properties of the dominance graph created by Construc-
tion 1 in general. The first property, stated in Claim 2(1), has already been seen
in the example above. All proofs omitted due to space constraints are given in
the full version of this paper [2].

Claim 2. Let (A,�) be the dominance graph created from ϕ by Construction 1.

1. Fix any j, 1 ≤ j ≤ `. For each minimal upward covering set M for A, if the
alternative ej is in M then all alternatives are in M (i.e., A = M).
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Fig. 2. Dominance graph from Construction 1

2. ϕ is satisfiable if and only if there is no minimal upward covering set for A
that contains any of the ej, 1 ≤ j ≤ `.

Construction 1 and Claim 2(2) already prove MCu-Member coNP-hard,
via a reduction from the complement of SAT. Building on this reduction and
that of Brandt and Fischer [4] to show MCu-Member NP-hard, we raise the
lower bound to Θp2-hardness. Wagner provided a sufficient condition for proving
Θp2-hardness that was useful also in other contexts (e.g., [13]):

Lemma 3 (Wagner [20]). Let S be some NP-complete problem and let T be
any set. If there is a polynomial-time computable function f such that, for all
m ≥ 1 and all strings x1, x2, . . . , x2m satisfying that if xj ∈ S then xj−1 ∈ S
(1 < j ≤ 2m), ‖{i | xi ∈ S}‖ is odd if and only if f(x1, x2, . . . , x2m) ∈ T , then
T is Θp2-hard.

One subtlety in our construction is due to the fact that we consider not
only minimum-size but also (inclusion-)minimal covering sets. To the best
of our knowledge, our constructions for the first time apply Wagner’s tech-
nique [20] to problems defined in terms of minimality/maximality rather than
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minimum/maximum size of a solution: In Construction 4 below, we define a
dominance graph based on Construction 1 and the construction from Brandt
and Fischer [4] (which is also presented in the proof sketch of Thm. 4.1 [2])
such that Lemma 3 can be applied to prove Θp2-hardness of MCu-Member (see
Theorem 6).

Construction 4 (for applying Lemma 3 to MCu-Member). We apply
Wagner’s Lemma with the NP-complete problem S = SAT and construct a dom-
inance graph. Fix an arbitrary m ≥ 1 and let ϕ1, ϕ2, . . . , ϕ2m be 2m boolean
formulas in conjunctive normal form such that if ϕj is satisfiable then so is
ϕj−1, for each j, 1 < j ≤ 2m. Without loss of generality, we assume that for
each j, 1 ≤ j ≤ 2m, the first variable of ϕj does not occur in all clauses of ϕj.
It is easy to see that if ϕj does not have this property, it can be transformed into
a formula that does have it, without affecting the satisfiability of the formula.

We will now define a polynomial-time computable function f , which maps
the given 2m boolean formulas to a dominance graph (A,�) with useful
properties for upward covering sets. Define A =

⋃2m
j=1Aj and the domi-

nance relation � on A by
(⋃2m

j=1 �j
)
∪
(⋃m

i=1

{
(u′1,2i, d2i−1), (u′1,2i, d2i−1)

})
∪

(
⋃m
i=2 {(d2i−1, z) | z ∈ A2i−2}), where we use the following notation:

1. For each i, 1 ≤ i ≤ m, let (A2i−1,�2i−1) be the dominance graph that results
from the formula ϕ2i−1 according to Brandt and Fischer’s construction [4].
We use the same names for the alternatives in A2i−1 as in the proof sketch
of [2, Thm. 4.1] that presents their construction, except that we attach the
subscript 2i − 1. For example, alternative d from the proof sketch of [2,
Thm. 4.1] now becomes d2i−1, x1 becomes x1,2i−1, y1 becomes y1,2i−1, etc.

2. For each i, 1 ≤ i ≤ m, let (A2i,�2i) be the dominance graph that results
from the formula ϕ2i according to Construction 1. We use the same names
for the alternatives in A2i as in that construction, except that we attach the
subscript 2i. For example, alternative a1 from Construction 1 now becomes
a1,2i, e1 becomes e1,2i, u1 becomes u1,2i, and so on.

3. For each i, 1 ≤ i ≤ m, connect the dominance graphs (A2i−1,�2i−1) and
(A2i,�2i) as follows. Let u1,2i, u1,2i, u

′
1,2i, u

′
1,2i ∈ A2i be the four alternatives



in the cycle corresponding to the first variable of ϕ2i. Then both u′1,2i and
u′1,2i dominate d2i−1. The resulting dominance graph is denoted by (Bi,�Bi ).

4. Connect the m dominance graphs (Bi,�Bi ), 1 ≤ i ≤ m, as follows: For each
i, 2 ≤ i ≤ m, d2i−1 dominates all alternatives in A2i−2.

Figure 3 sketches the dominance graph (A,�) created by Construction 4.
Clearly, (A,�) is computable in polynomial time. Before we use this construc-
tion to prove MCu-Member Θp2-hard, we again list the key properties of this
construction. Note that the first item of Claim 5 considers, for any fixed i with
1 ≤ i ≤ m, the dominance graph (Bi,�Bi ) resulting from the formulas ϕ2i−1

and ϕ2i in Step 3 of Construction 4. Doing so will simplify our arguments for
the whole dominance graph (A,�) in the second and third item of Claim 5.

Claim 5. Consider Construction 4.

1. For each i, 1 ≤ i ≤ m, alternative d2i−1 is contained in some minimal
upward covering set for (Bi,�Bi ) if and only if ϕ2i−1 is satisfiable and ϕ2i

is not.
2. For each i, 1 ≤ i ≤ m, let Mi be the minimal upward covering set for

(Bi,�Bi ) according to the cases in the proof of the first item. Then each
of the sets Mi must be contained in every minimal upward covering set for
(A,�).

3. It holds that ‖{i | ϕi ∈ SAT}‖ is odd if and only if d1 is contained in some
minimal upward covering set M for A.

5 Complexity of MCu-Member and MCu-Find

We now apply the constructions from Section 4 to show that MCu-Member
is Θp2-hard and that MCu-Find cannot be solved in polynomial time unless
P = NP.

Theorem 6. MCu-Member is hard for Θp2 and in Σp
2 .

Our main goal is to determine the complexity of finding minimal unidirec-
tional covering sets. As mentioned in the discussion in Section 3, the hardness
of MCu-Find does not follow directly from the NP-hardness of MCu-Member,
and neither from its Θp2-hardness (Theorem 6). However, Construction 1 has
another important property, stated in Claim 7, that can be applied to show
coNP-hardness of the problem MCu-Unique: Given a set A of alternatives and
a dominance relation � on A, does there exist a unique minimal upward covering
set for A? And this property can be used to establish the hardness of the search
problem MCu-Find.

Claim 7. Consider Construction 1. The boolean formula ϕ is not satisfiable if
and only if there is a unique minimal upward covering set for A.

Theorem 8. If P 6= NP then minimal upward covering sets cannot be found in
polynomial time, i.e., MCu-Find is not polynomial-time solvable unless P = NP.



Table 1. Overview of complexity results for various covering set problems. As indi-
cated, previously known results are due to Brandt and Fischer [4]; all other results are
new to this paper.

Problem Type MCu MSCu MCd MSCd

Size NP-complete NP-complete NP-complete NP-complete

Member Θp
2 -hard, in Σp

2 Θp
2 -complete Θp

2 -hard, in Σp
2 coNP-hard, in Θp

2
Member-All coNP-complete [4] Θp

2 -complete coNP-complete [4] coNP-hard, in Θp
2

Unique coNP-hard, in Σp
2 coNP-hard, in Θp

2 coNP-hard, in Σp
2 coNP-hard, in Θp

2
Test coNP-complete coNP-complete coNP-complete coNP-complete

Find not in polynomial not in polynomial not in polynomial not in polynomial
time unless time unless time unless P = NP time unless
P = NP P = NP (follows from [4]) P = NP

Proof. Consider the problem of deciding whether there exists a nontrivial min-
imal upward covering set, i.e., one that does not contain all alternatives. By
Construction 1 and Claim 7, there exists a trivial minimal upward covering set
for A (i.e., one containing all alternatives in A) if and only if this set is the
only minimal upward covering set for A. Thus, the coNP-hardness proof for
MCu-Unique that is based on Claim 7 immediately implies that the problem
of deciding whether there is a nontrivial minimal upward covering set for A is
NP-hard. However, since the latter problem can easily be reduced to the search
problem (because the search problem, when used as a function oracle, will yield
the set of all alternatives if and only if this set is the only minimal upward cover-
ing set for A), it follows that the search problem cannot be solved in polynomial
time unless P = NP. ut

6 Generalizations

In addition to the (inclusion-)minimal unidirectional covering sets considered by
Brandt and Fischer [4], we will also consider minimum-size covering sets, i.e.,
unidirectional covering sets of smallest cardinality. For some of the computa-
tional problems we study, different complexities can be shown for the minimal
and minimum-size versions of the problem (see Theorem 9 and Table 1). Specifi-
cally, we will consider six types of computational problems, for both upward and
downward covering sets, and for each both their “minimal” and “minimum-size”
versions. In addition to MCu-Member and MCu-Find (which were defined in
Section 2) and to MCu-Unique (which was defined in Section 5) we now define
three more problem types:

1. MCu-Size: Given a set A of alternatives, a dominance relation � on A, and
a positive integer k, does there exist some minimal upward covering set for
A containing at most k alternatives?

2. MCu-Member-All: Given a set A of alternatives, a dominance relation
� on A, and a distinguished element d ∈ A, is d contained in all minimal
upward covering sets for A?



3. MCu-Test: Given a set A of alternatives, a dominance relation � on A, and
a subset M ⊆ A, is M a minimal upward covering set for A?

If we replace “upward” by “downward” in the six problem types,
we obtain the six corresponding “downward covering” versions, de-
noted by MCd-Size, MCd-Member, MCd-Member-All, MCd-Unique,
MCd-Test, and MCd-Find. And if we replace “minimal” by “minimum-
size” in the twelve problems already defined, we obtain the corresponding
“minimum-size” versions: MSCu-Size, MSCu-Member, MSCu-Member-All,
MSCu-Unique, MSCu-Test, MSCu-Find, MSCd-Size, MSCd-Member,
MSCd-Member-All, MSCd-Unique, MSCd-Test, and MSCd-Find. Note
that the four problems MCu-Find, MCd-Find, MSCu-Find, and MSCd-Find
are search problems, whereas the other twenty problems are decision problems.
Our results are stated in the following theorem.

Theorem 9. The complexity of the covering set problems defined in this paper
is as shown in Table 1.
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