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Abstract. Computational social choice is a research area at the intersec-
tion of computer science, mathematics, and economics that is concerned
with aggregation of preferences of multiple agents. Typical applications
include voting, resource allocation, and fair division. This chapter high-
lights six representative research areas in contemporary computational
social choice: restricted preference domains, voting equilibria and itera-
tive voting, multiwinner voting, probabilistic social choice, random as-
signment, and computer-aided theorem proving.

1 Introduction

Within the past few decades there has been a lively exchange of ideas between
computer science, in particular artificial intelligence, algorithms and complexity
theory, on the one hand, and economics, in particular game theory and social
choice, on the other hand. This exchange goes in both directions, and is largely
motivated by the emergence and the growing ubiquity of the Internet, which cre-
ated a need for concepts concerning social interaction and cooperation provided
by economics as well as for the algorithmic tools of computer science.

A recent example of this trend is the formation of the inter-disciplinary re-
search area known as computational social choice, which combines ideas, models,
and techniques from social choice theory with those of computer science. Social
choice theory, which itself is already a multi-disciplinary area with contributions
from economics, mathematics, political science, and philosophy, concerns the for-
mal analysis and design of methods for aggregating the preferences of multiple
agents. Typical applications include voting, resource allocation, and fair division.
Computer science offers several powerful tools such as algorithm design, com-
plexity theory, and communication complexity for analyzing such problems. At
the same time, computer science has produced new application areas for social
choice such as webpage ranking or collective decision-making in computational
multi-agent systems.

In its most general form, social choice theory is concerned with a set of al-
ternatives and a set of agents who possess binary preference relations (typically
assumed to be complete and transitive) over the alternatives; a collection of
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agents’ preference relations is called a preference profile. Problems of interest
then include how to define (and find) a collective choice in form of a set of alter-
natives, a ranking of alternatives, or a lottery over alternatives that appropriately
reflect the agents’ individual preferences. Collective outcomes and aggregation
functions that return these outcomes are usually evaluated and compared by ver-
ifying whether they satisfy desirable properties, so-called axioms. Classic results
in social choice—the most famous of which is certainly Arrow’s impossibility
theorem [2]—have shown the incompatibility of certain sets of axioms, or char-
acterized specific aggregation functions in terms of axioms they satisfy.

Most subareas of social choice (e.g., coalition formation, matching markets,
and fair division) can be obtained as special cases of the general model described
above by imposing structure on the set of alternatives and restricting the domain
of preference relations accordingly. For example, in assignment problems, the
goal is to find a fair and efficient assignment of objects to agents based on the
agents’ preferences over objects. To cast an assignment problem as a social choice
problem, we let the set of alternatives be the set of all possible allocations and
postulate that agents are indifferent among all allocations in which they receive
the same object. This conceptual insight is useful because it sometimes allows
the transfer of positive results from superdomains to subdomains and that of
negative results from subdomains to superdomains. However, most statements
require a specific analysis of the domain in question and are often based on
axioms that can only be meaningfully defined within this domain. Moreover,
computational statements usually do not carry over from one domain to another
due to the different representations.

Initial results in computational social choice focused on the computational
complexity of aggregation functions that were proposed in the social choice liter-
ature. For example, it was shown that computing Kemeny’s rule, which returns
collective consensus rankings and satisfies many desirable axioms, is NP-hard
[23], and deciding whether a given alternative is on top of a consensus rank-
ing is Θp

2-complete [85]. This and similar hardness results were followed by the
analysis of heuristics, approximation algorithms, and fixed-parameter tractable
algorithms for these problems. At the same time, new interesting computational
problems concerning various ways of manipulating the election outcome were
defined and investigated. Here, computational hardness is desirable and meant
to serve as a shield against strategic behavior [see, e.g., 72, 70, 55, 71]. The
contributions of contemporary computational social choice go far beyond purely
algorithmic questions, and it has been claimed that computational social choice
has revitalized the entire field of social choice theory. For instance, a recent re-
sult in computational social choice resolved a long-standing open problem in
the cake cutting literature: Aziz and Mackenzie [6] proposed the first envy-free
cake cutting protocol that requires a bounded number of queries and cuts. Even
though the number of cuts is astronomically large, this result is surprising be-
cause experts believed that no such protocol exists.5

5 The number of cuts is upper bounded by nnnnnn

where n is the number of agents.
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Computational social choice is much too broad to be covered in its entirety
in this chapter. We will therefore discuss a handful of new exciting research
directions within computational social choice that have not been comprehen-
sively addressed so far and that we consider to be particularly promising: re-
stricted preference domains, voting equilibria and iterative voting, multiwinner
voting, probabilistic social choice, random assignment, and computer-aided the-
orem proving.

2 Restricted Preference Domains

It is well known that when we aggregate the preferences of a group of agents
by taking a majority vote over each pair of alternatives, we cannot ensure a
rational outcome: the collective preference relation may fail to be transitive even
if individual preferences are. This observation goes back to Condorcet (1785),
and can be seen as the root cause for many impossibility results such as those
of Arrow [2] or Gibbard [82] and Satterthwaite [120].

Black [26] was the first to observe that this issue does not arise if the voters’
preferences are essentially one-dimensional: he defined the domain of single-
peaked preferences and showed that for preference profiles that belong to this
domain, the majority preference relation is necessarily transitive for an odd
number of voters; this implies the existence of a Condorcet winner (an alternative
that is preferred to every other alternative by a majority of voters). Informally, a
preference profile is said to be single-peaked if the alternatives can be ordered on
a line so that each voter has a favorite point (peak) on this line and his affinity
for the alternatives declines as one moves away from the peak in either direction.

Single-peaked preferences have received a considerable amount of attention
from social choice researchers since Black’s pioneering work [e.g., 100]. More re-
cently, it has been observed that restricting attention to such preferences can
also simplify many problems in computational social choice. For instance, there
are several voting rules that return a Condorcet winner whenever it exists and
otherwise have to solve an NP-hard optimization problem. For any such rule
computing the winner is easy if the number of voters is odd and their prefer-
ences are single-peaked: by Black’s result, we can simply return the Condorcet
winner. For some of these rules, further effort yields polynomial-time algorithms
for single-peaked profiles with an even number of voters [39]. The single-peaked
ordering of the alternatives can also be used as a basis for a dynamic program;
intuitively, one proceeds by computing a partial solution for each prefix of the
alternative ordering. This approach leads, e.g., to a polynomial-time algorithm
for computing the outcome of the Chamberlin–Courant multiwinner voting rule
(see Section 4) for single-peaked profiles [24]. In recent years, many other com-
putational social choice problems were shown to become easier for single-peaked
preferences: examples include various forms of strategic behavior in elections
[see, e.g., 74, 75] and preference elicitation [52]. Some of these easiness results
extend to preference profiles that are nearly single-peaked, i.e., can be made
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single-peaked by a small number of modifications (such as deleting a few voters
or collapsing or swapping a few alternatives) [see, e.g., 56, 57, 75, 134].

In single-peaked profiles, alternatives can be positioned on a line in a way
that respects the voters’ preferences. We can also obtain positive algorithmic re-
sults if alternatives can be mapped to a tree [137, 109] or a cycle [110]. Another
approach is based on ordering voters rather than alternatives; the resulting do-
main of single-crossing preferences also admits efficient algorithms for a number
of problems that are otherwise computationally hard [see, e.g., 125, 95].

An interesting class of algorithmic problems associated with restricted pref-
erence domains is to determine whether a given profile belongs to a particular
domain. For single-peaked and single-crossing preferences, these problems admit
efficient algorithms [59] as well as elegant characterizations in terms of forbid-
den substructures [21, 44]. By contrast, for trees, the complexity depends on
whether we are satisfied with any tree, in which case there is an efficient al-
gorithm [130], or whether we want to construct a tree that satisfies additional
constraints, in which case the answer depends on the nature of the constraints
[109]. A related question is whether voters and alternatives can be embedded
into a d-dimensional space so that the preferences are driven by distances: for
d = 1 the existence of such an embedding can be determined in polynomial time
[59], but for d > 1 this problem is equivalent to the existential theory of reals
(and thus, in particular, NP-hard) [107]. It is also hard to determine whether
a preference profile is close to being single-peaked or single-crossing for many
distance measures (with some notable exceptions) [57, 45, 69].

A more extensive survey of recent computational results for restricted do-
mains is provided by Elkind et al. [66].

3 Voting Equilibria and Iterative Voting

In many voting scenarios, a voter or a group of voters can alter an election out-
come to their benefit by misrepresenting their preferences; indeed, no reasonable
voting rule is immune to this problem [82, 120]. As a consequence, understand-
ing the complexity of finding a manipulative vote under various voting rules has
been a prominent research topic in computational social choice since the incep-
tion of the area (see, e.g., the survey by Conitzer and Walsh [55]). However, the
standard setting of voting manipulation assumes that only some of the voters
are strategic, and the interests of all strategic voters are aligned.

When all voters act strategically, it is natural to assume that their behavior
is governed by a game-theoretic solution concept, such as Nash equilibrium.
However, it is not easy to identify an appropriate solution concept: voting games
rarely admit dominant strategies, and they often have many Nash equilibria. For
instance, under plurality voting with at least three voters, the situation where all
voters vote for the same alternative is a Nash equilibrium, even if this alternative
is universally hated, as no voter can unilaterally change the election outcome.

One can eliminate some of these equilibria by assuming that, in addition to
preferences over alternatives, voters also have secondary preferences: e.g., they
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may prefer not to lie unless a lie is clearly beneficial (such voters are called truth-
biased), or they may prefer not to participate at all if their vote cannot influence
the election outcome (such voters are called lazy). Either assumption eliminates
many unrealistic Nash equilibria; the properties of the surviving equilibria and
their computational complexity have been investigated by a number of authors
[129, 103, 62, 63]. Another useful technique to get rid of many of the unintuitive
outcomes is to focus on trembling-hand Nash equilibria [106].

An alternative approach is to move away from the assumption that all vot-
ers submit their ballots simultaneously. For instance, one can consider settings
where voters submit their ballots one by one; the appropriate solution concept is
then subgame-perfect Nash equilibrium [133, 58]. Alternatively, one can consider
dynamic mechanisms, where voters take turns changing their ballots in response
to the observed outcome, until no voter has an incentive to make a change: this
line of work was initiated by Meir et al. [97], who focused on better/best-response
dynamics of plurality voting, and has been subsequently extended to other vot-
ing rules [see, e.g., 116, 84, 104, 93]. Convergence and complexity of iterative
voting depends on whether voters get to observe the full set of current ballots or
just some aggregated information about the ballot profile [115, 68, 98], whether
voters compute their best responses at each step, or may use other heuristics
[84, 105], and whether voters exhibit secondary preferences, such as laziness or
truth bias [113]; see the recent survey by Meir [96].

4 Multiwinner Voting

In multiwinner voting, the goal is to select not just a single winner, but a fixed-
size set of winners (a committee). Multiwinner voting has a diverse set of ap-
plications, which include electing parliaments, shortlisting candidates for a job,
selecting locations for public facilities, or deciding which products to advertise
to customers. As a consequence, there is a wide variety of multiwinner voting
rules, and the research challenge is to formulate desirable properties (axioms) for
such rules so as to decide which rules are more suitable for each application, as
well as to develop efficient algorithms for computing the outputs of such rules.

Multiwinner voting rules can be broadly classified according to their inputs;
while most of the research so far focused on rules where voters have to rank the
alternatives, there is also a substantial body of work on multiwinner rules that
merely ask each voter to indicate which alternatives they approve.

For ranked ballots, an important class of multiwinner rules is that of commit-
tee scoring rules [65], which can be seen as analogues of the classic single-winner
scoring rules. In more detail, under single-winner scoring rules, each voter as-
signs a certain number of points to each alternative, based on that alternative’s
position in her ranking. A typical example is the Borda rule: the Borda score
assigned by voter v to alternative c is given by m− j, where j is the position of
c in v’s ranking and m is the number of alternatives; the winner(s) are the alter-
natives with the highest total Borda score (summed over all voters). Similarly,
under committee scoring rules, each voter assigns a score to each committee,
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based on the set of positions of committee members in her preference order.
For instance, the score that voter v assigns to a committee S can be the sum
of Borda scores of all members of S, or the Borda score of v’s most preferred
member of S; under the former approach, the winning size-k committee consists
of k alternatives with the highest Borda score, and under the latter approach we
get the well-known Chamberlin–Courant rule [50].

An alternative approach is based on extending Condorcet’s principle to the
multiwinner setting. There are several ways to implement this idea: one can di-
rectly compare committees and ask for a committee that is preferred to every
other committee by a majority of voters, or one can compare committees and
individual alternatives, and require that each committee member is preferred to
each non-member by a majority of voters [80, 114, 22], or, alternatively, that no
‘large’ group of voters prefers a non-member of the committee to each committee
member [61, 20]. Yet another class of voting rules, which includes the popular
single transferable vote rule, is based on iteratively adding alternatives to the
committee and removing or reweighting the voters who approve these alterna-
tives. The seemingly simpler setting of multiwinner voting with approval ballots
also admits a variety of interesting voting rules; in fact, there are sophisticated
approval-based multiwinner rules that date back to 19th century such as those
due to Thiele and Phragmén. This area also has connections to the literature on
apportionment [46].

Unfortunately, for many appealing multiwinner rules it is NP-hard to find
a winning committee [92, 112, 94, 15, 126]. To circumvent these hardness re-
sults, researchers have developed approximation algorithms and used techniques
of fixed-parameter tractability [see, e.g., 94, 24, 48, 124, 126]; also, it has been
shown that many multiwinner voting rules become easier when voters’ prefer-
ences belong to a restricted domain (see Section 2) [24, 125, 137, 60, 110, 108].

Computational social choice researchers have also contributed to understand-
ing multiwinner voting rules from a normative perspective. For ranked ballots,
Elkind et al. [65] put together a list of prominent multiwinner rules, formulated
a number of desirable properties of such rules, and determined which of the
rules in their list satisfied each property. Interestingly, they observed that an ap-
proximation algorithm for an NP-hard voting rule, when interpreted as a voting
rule in its own right, may perform better according to these criteria than the
rule it was meant to approximate; this is the case, for instance, for the Greedy
Monroe rule of Skowron et al. [124]. For approval-based ballots, the justified
representation axiom and its extensions have been used to explain some features
of the important Proportional Approval Voting (PAV) rule [19, 119]. The class
of committee scoring rules discussed in the beginning of this section was shown
to admit an axiomatic characterization [127] that is reminiscent of Young’s fa-
mous characterization of single-winner scoring rules [136]; the structure of this
class and axiomatic properties of individual rules within this class are a subject
of ongoing research [see, e.g., 126, 76, 77, 64, 123, 49]. We refer the reader to
the recent survey by Faliszewski et al. [78] for further details on axiomatic and
computational properties of multiwinner rules.
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5 Probabilistic Social Choice

Randomization plays an important role in social choice theory. It is easily seen
that deterministically picking a single winner is at variance with basic fairness
principles (for example, when there are two alternatives and two voters such
that each voter prefers a different alternative). In the past few years, there has
been refreshed interest in voting rules that return probability distributions over
alternatives (so-called lotteries) [e.g., 11, 13, 14, 34, 31, 32]. Often, the outcomes
of these rules can also be interpreted as fractional shares of the alternatives.

Randomization may provide a way to circumvent classic impossibility results
because the design space of probabilistic voting rules is much richer than that
of deterministic ones. Since it is impractical to ask voters for their complete
preferences over all lotteries, a common approach is to systematically extend
preferences over alternatives to (possibly incomplete) preferences over lotteries
via so-called preference extensions. There are various sensible preference exten-
sions, which in turn lead to different generalizations of standard properties such
as strategyproofness (no voter is better off by misrepresenting his preferences)
and Pareto efficiency (no voter can be made better off without making another
one worse off). A very influential preference extension is based on first-order
stochastic dominance (SD). According to this extension, lottery p is preferred
to lottery q if and only if, for every alternative x, the probability that p selects
an alternative that is at least as good as x is greater or equal than the proba-
bility that q selects such an alternative. Equivalently, p is preferred to q if and
only if, for every utility function consistent with the preferences over alterna-
tives, p yields at least as much expected utility as q. A series of increasingly
difficult theorems has recently culminated in a sweeping computer-aided impos-
sibility, showing that there is no randomized rule that simultaneously satisfies
SD-efficiency and weak SD-strategyproofness [32, see also Section 7].

Of course, every set-valued voting rule can be straightforwardly turned into a
randomized rule by returning the uniform lottery over all winners. Randomiza-
tion, however, allows for more elaborate rules that satisfy properties unmatched
by deterministic rules. Particularly noteworthy in this context are random serial
dictatorship (RSD) and maximal lotteries (ML).

RSD is defined by picking a sequence of the voters uniformly at random
and then invoking serial dictatorship where voters proceed in a sequence, and
each voter narrows down the set of alternatives by picking his most preferred
alternatives among the ones selected by previous voters. RSD enjoys strong
SD-strategyproofness, but violates SD-efficiency. It is often used in the domain
of assignment where it is also referred to as random priority (see Section 6).
While implementing RSD by uniformly selecting a sequence of agents and then
running serial dictatorship is straightforward, it was shown that computing the
resulting RSD probabilities is #P-complete [10], but fixed parameter tractable
for parameters such as the number of voters or the number of alternatives [7].

ML is defined as the rule that returns all lotteries that are at least as good as
any other lottery in a well-defined way. Maximal lotteries can thus be viewed as
a probabilistic generalization of the notion of a Condorcet winner. However, in
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contrast to deterministic Condorcet winners which often fail to exist, existence
of maximal lotteries is guaranteed by the Minimax Theorem. ML satisfies a very
strong notion of efficiency (stronger than SD-efficiency), but fails to be even
weakly SD-strategyproof. Maximal lotteries are equivalent to mixed maximin
strategies in a symmetric zero-sum game induced by the voters’ preferences and
can be computed in polynomial time via linear programming. ML has been
characterized as the only randomized voting rule that satisfies two fairly natural
consistency conditions and it has been repeatedly recommended for practical use
[see 33].6

Other computational work on probabilistic social choice deals with estab-
lishing hardness of manipulation via randomization [e.g., 54, 102, 132], approx-
imating deterministic voting rules [e.g., 111, 25, 122], defining new randomized
rules [e.g., 4, 8], and measuring the worst-case utilitarian performance of ran-
domized voting rules [e.g., 1]. A more comprehensive overview of recent trends
in probabilistic social choice is provided by Brandt [36].

6 Random Assignment

Random assignment is concerned with the probabilistic assignment of m objects
to n agents. Each agent specifies transitive and complete preferences over the ob-
jects, and the goal is to allocate the objects among the agents in a fair, efficient,
and strategyproof manner. When fairly assigning indivisible objects, randomiza-
tion is necessary in order to satisfy agents with identical preferences. Possible
applications include assigning dormitories to students, jobs to applicants, rooms
to housemates, processor time slots to jobs, parking spaces to employees, offices
to workers, kidneys to patients, etc.

For simplicity, it is often assumed that m = n, that each agent has demand
for exactly one object (unit demand), and that individual preferences are strict.
A random assignment is a probability distribution over deterministic assign-
ments and can be represented by a matrix that specifies, for each agent and each
object, the probability with which the agent receives the object. The matrix is
bistochastic, which means that all row sums and all column sums are equal to 1.7

A random assignment rule maps each preference profile to a random assignment.
It is assumed that agents are only concerned about their individual random as-
signment, given by the corresponding row of the bistochastic matrix. In order
to reason about the axiomatic properties of random assignments and random
assignment rules, preferences over objects can be extended to preferences over
lotteries just as described in Section 5. It is then possible to define efficiency,
strategyproofness, and envy-freeness (no agent prefers another agent’s random
assignment) based on the SD preference extension. Bogomolnaia and Moulin
[29] have shown that no random assignment rule satisfies SD-efficiency, strong

6 ML is one of several voting rules used by the online voting tool Pnyx (https://
pnyx.dss.in.tum.de).

7 By the Birkhoff-von Neumann Theorem, any random assignment can be represented
by a (not necessarily unique) convex combination over discrete assignments.

https://pnyx.dss.in.tum.de
https://pnyx.dss.in.tum.de
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SD-strategyproofness and equal treatments of equals (agents with identical pref-
erences receive identical individual random assignments), even when individual
preferences are strict. The tradeoff among these properties is the subject of on-
going research [e.g., 5, 99].

RSD, as described in Section 5, has a particularly natural interpretation in
random assignment: a sequence of agents is picked uniformly at random and
then one agent after another picks his most preferred of the remaining objects.
RSD inherits strategyproofness from the more general voting domain, but still
violates SD-efficiency and only satisfies a weak notion of SD-envy-freeness. The
computational properties of RSD mentioned in Section 5 also hold within the
domain of assignment [10, 7, 118].

A well-studied alternative to RSD is the probabilistic serial (PS) rule, which
is SD-efficient, strongly SD-envy-free, and weakly SD-strategyproof (as long as
individual preferences are strict).8 Under PS, agents ‘eat’ the most preferred
available object at an equal rate until all objects are consumed. When a most
preferred object is completely consumed, agents eat their next most preferred ob-
ject that is still available. The fraction of any object consumed by an agent is the
probability of the agent receiving that object. There have been a number of ap-
pealing axiomatic characterizations of PS using SD-efficiency, SD-envy-freeness,
and additional properties [28, 131, 27]. Furthermore, PS has been extended in
a number of ways [e.g., 88, 135, 3, 47, 121]. In particular, there is a natural
extension to the more general case of multi-unit demand [29, 91, 86]. Just as
in the case of ties in the preferences, weak SD-strategyproofness breaks down
when allowing multi-unit demand. However, it has been shown that the problem
of manipulating PS to increase one’s expected utility is NP-hard [16].

Maximal lotteries, as described in Section 5, are known as popular random
assignments within the domain of assignment [89, 12]. In contrast to the voting
domain, however, popular random assignments are rarely unique and popularity
can be seen as a property of random assignment rules rather than a rule by itself.
In this sense, popularity is stronger than SD-efficiency and it is violated by both
RSD and PS. Moreover, popularity has been shown to be incompatible with each
of weak SD-strategyproofness and weak SD-envy-freeness [42]. Kavitha et al. [89]
have shown that popular random assignments can be computed in polynomial
time via linear programming.

Apart from examining existing rules, the structure and computational com-
plexity of efficiency notions constitutes an interesting research area [14, 17].
There is a close connection between probabilistic assignment of indivisible ob-
jects and deterministic allocation of divisible objects [see, e.g., 9]. Other recent
work has focused on theoretically and experimentally analyzing the performance
of random assignment rules [e.g., 79, 87, 18] and extending the model to allow
for other richer features such as incorporating side constraints [47], priorities of
objects over agents [90], endowments [3], or optional participation [35].

8 No rule satisfies these conditions when ties are allowed in the agents’ preferences
[88].
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7 Computer-aided Theorem Proving

Due to its rigorous axiomatic foundation and its emphasis on impossibility re-
sults, social choice theory is particularly well-suited for computer-aided theo-
rem proving techniques. Apart from work that is directed towards formalizing
and verifying existing results [see, e.g., 101, 83], a number of recent papers have
proved new theorems with the help of computers [37, 30, 41, 32, 43]. This branch
of research was initiated by Tang and Lin [128], who reduced well-known impos-
sibility results such as Arrow’s theorem to finite instances, which could then be
checked by SAT solvers.

In more detail, the approach for these proofs usually goes along the following
lines:9 First, it is manually proven that if there exists a voting rule that satisfies
a given set of axioms for m+1 alternatives and n+1 voters, then we can also find
a voting rule that satisfies the same set of axioms for m alternatives and n voters.
The contrapositive of this statement can serve as an induction step for impossi-
bility theorems: If there is no voting rule satisfying some axioms for fixed m and
n, then there is no such rule for any larger m and n either. Thus, it suffices to
prove the impossibility for fixed—and ideally small—m and n. Checking whether
there exists a voting rule that satisfies certain axioms even for small m and n
can be very difficult and is obviously a much more complex task than checking
whether a given voting rule satisfies the axioms. Exhaustive search is infeasible
because the number of possible voting rules is prohibitively large. These prob-
lems are therefore typically tackled using general problem solvers such as SAT
(propositional satisfiability), SMT (satisfiability modulo theories), ASP (answer
set programming), or MIP (mixed integer programming). In most cases, the ax-
ioms are encoded as a propositional formula and a SAT solver is asked whether
this formula has a satisfying assignment. If it does, the satisfying assignment can
be translated back to a concrete voting rule that satisfies the given axioms. If the
formula is unsatisfiable, no such voting rule exists. Many SAT instances are ini-
tially computationally infeasible and can only be solved after leveraging insights
into the axioms and finding a restricted domain of preference profiles sufficient
for the impossibility. A common criticism of computer-aided proving methods is
that the verdict of the computer usually stands without human-readable proof.
Fortunately, when relying on SAT solving, this criticism can be addressed by
extracting a human-readable proof from an inclusion-minimal unsatisfiable set
of clauses returned by the SAT solver. This approach, pioneered by Brandt and
Geist [37], has been successfully applied in several recent papers [30, 32, 41, 43].

Two representative results in this branch of research are an improved
computer-aided proof of Moulin’s No-Show Paradox and an impossibility for
randomized voting rules mentioned in Section 5. The first proof requires only
12 voters (instead of Moulin’s 25) and this bound is furthermore shown to be
tight [41]. The computer proof (unexpectedly) exploits certain automorphisms
in preference profiles, which makes the proof easier to verify and arguably more

9 This section focuses on voting, but all techniques can be similarly applied to other
social choice domains such as assignment or coalition formation.
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elegant than Moulin’s proof. The second result shows the incompatibility of SD-
efficiency and weak SD-strategyproofness and strengthens a number of previous
impossibilities [32]. Since working with lotteries requires real-valued arithmetic
(rather than only Boolean logic), the statement was obtained via an SMT solver.
The resulting proof is rather complex and difficult to verify for humans. It was
therefore translated back into a proof in higher-order logic, which was in turn
verified via the interactive theorem prover Isabelle/HOL.10

An important benefit of the described approach is its universality and flexi-
bility. As soon as a problem has been formalized, it is straightforward to adapt
individual axioms or alter the encoding so that related problems can be solved,
too. For a more comprehensive account of computed-aided theorem proving in
social choice theory, the reader is referred to the survey by Geist and Peters [81].

8 Further Reading

There are various excellent sources that extensively cover the existing literature,
most notably the Handbook of Computational Social Choice [40] and a recently
released book on trends in computational social choice [67]. Further overviews
and introductions were provided by Rothe [117], Brandt et al. [38], Conitzer [53],
Faliszewski and Procaccia [70], Faliszewski et al. [73], and Chevaleyre et al. [51].
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