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seemingly mild properties are violated by common voting rules. In this chapter, we
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Young’s rule, and MaxiMin—is of no practical relevance. The ACP, on the other
hand, frequently occurs under various distributional assumptions about the voters’
preferences. The extent to which it is real threat, however, strongly depends on the
voting rule, the underlying distribution of preferences, and, somewhat surprisingly,
the parity of the number of voters.
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1 Introduction

A large part of the social choice literature studies voting paradoxes in which seem-
ingly mild properties are violated by common voting rules. Moreover, there are a
number of sweeping impossibilities, which entail that there exists no “optimal” vot-
ing rule that avoids all paradoxes. As a consequence, much of the research in social
choice theory is concerned with whether a paradox can appear for a given voting rule
or not. However, it turns out that some paradoxes—while possible in principle—will
almost never appear in practice.

An extreme example of this phenomenon occurred for the voting rule TEQ
(Schwartz, 1990). Due to its unwieldy recursive definition, it was unknown for more
than 20 years whether TEQ satisfies any of a number of very basic desirable proper-
ties. In 2013, Brandt et al. (2013) have shown thatTEQ violates all of these properties.
However, their proof is non-constructive and only shows the existence of astro-
nomically large counterexamples requiring about 10136 alternatives. While smaller
computer-generated counterexamples exist, extensive simulations have shown that
these counterexamples are extremely rare and that TEQ satisfies the desirable prop-
erties for all practical purposes (Brandt et al., 2010). These findings motivated us to
provide analytical, experimental, and empirical justifications for such statements.

In this chapter, we study two voting paradoxes. The first is the well-known Con-
dorcet loser paradox (CLP), which occurs when a voting rule selects the Condorcet
loser, an alternative that loses against every other alternative in pairwise majority
contests. Perhaps surprisingly, this paradox affects some Condorcet extensions, i.e.,
voting rules that are guaranteed to select an alternative that wins against every other
alternative in pairwisemajority contests. Common affected Condorcet extensions are
Dodgson’s rule, Young’s rule, and MaxiMin (Fishburn, 1977). The second paradox,
called agenda contraction paradox (ACP), occurs when removing losing alternatives
changes the set of winners. There are only few voting rules that do not suffer from
this paradox, one of them being the essential set (Dutta and Laslier, 1999). In fact,
all common voting rules that violate the CLP also violate the ACP.

In principle, quantitative results on voting paradoxes can be obtained via three
different approaches. The analytical approach uses theoretical models to quantify
paradoxes based on certain assumptions about the voters’ preferences. Analytical
results usually tend to be quite hard to obtain and are limited to simple—and often
unrealistic—assumptions. The experimental approach uses computer simulations
based on underlying stochastic models of how the preference profiles are distributed.
Experimental results have less general validity than analytical results, but can be
obtained for arbitrary distributions of preferences. Finally, the empirical approach
is based on evaluating real-world data to analyze how frequently paradoxes actually
occur or how frequently they would have occurred if certain voting rules had been
used for the given preferences. Unfortunately, only very limited real-world data for
elections is available.

Our main results are as follows.
Using Ehrhart theory, we compute upper bounds for the CLP as well as the

exact probabilities under which the CLP occurs for MaxiMin when there are four
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alternatives and preferences are distributed according to the Impartial Anonymous
Culture (IAC) distribution. This approach also yields the exact limit probabilities
(for the CLP and the ACP) when the number of voters goes to infinity. To the best of
our knowledge, these are the first analytical results for the CLP on four alternatives
(which is the minimal number of alternatives for which the voting rules we consider
exhibit the CLP).

For both the CLP and the ACP, we throughly analyze a variety of other settings
with more alternatives and other stochastic preference models using computer sim-
ulations. For those settings in which the analytical approach is also feasible, our
results are in almost perfect congruence with the analytical results. This is strong
evidence for the accuracy of our simulation results.

It turns out that the CLP—which is often cited as a major flaw of some Con-
dorcet extensions—is of no practical relevance. The maximum probability under all
preference models we studied is 2.2% (for MaxiMin, three voters, four alternatives,
and IAC). In more realistic settings, it is much lower. For Dodgson’s rule, it never
exceeds 0.01%. We did not find any occurrence of the paradox in real-world data,
neither in the PrefLib library (Mattei and Walsh, 2013) nor in millions of elections
based on data from the Netflix Prize (Bennett and Lanning, 2007).

The ACP, on the other hand, frequently occurs under various distributional as-
sumptions about the voters’ preferences. The extent to which it is real threat, however,
strongly depends on the voting rule, the underlying distribution of preferences, and
the parity of the number of voters. If the number of voters is much larger than the
number of alternatives, less discriminating voting rules seem to fare better than more
discriminating ones. For example, when there are 1,000 voters and four alternatives,
the probability for the ACP under Copeland’s rule and IAC is 9% while it occurs
with a probability of 33% for Borda’s rule. When there are fewer voters, the parity
of the number of voters plays a surprisingly strong role. For example, if there are 6
alternatives, the ACP probability for Copeland’s rule is 44% for 50 voters, but only
26% for 51 voters. These results are in line with the empirical data we analyzed.

2 Related Work

There is a huge body of research on the quantitive study of voting paradoxes.
Gehrlein (2006) focusses on the non-existence of Condorcet winners, arguably the
most studied voting paradox. An overview of many paradoxes with an analysis
of group coherence is provided by Gehrlein and Lepelley (2011). On top of that,
Gehrlein and Lepelley (2011, 2017) survey different tools and techniques that have
been applied over the years for the quantitive study of voting paradoxes.

The analytical study of voting paradoxes under the assumption of IAC is most
effectively done via Ehrhart theory, which goes back to the year 1962 and the French
mathematician Eugène Ehrhart (Ehrhart, 1962). Interestingly, parts of these results
have been reinvented (in the context of social choice) by Huang and Chua (2000)
in 2000, before Ehrhart’s original work was independently rediscovered for social
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choice by Wilson and Pritchard (2007) and Lepelley et al. (2008) more than forty
years later.

Current research on the probability of voting paradoxes under IAC is based on
algorithms that build upon Ehrhart’s results, such as the algorithm developed by
Barvinok (1994). For many years, these approaches were limited to cases with three
or fewer alternatives. Recent advances in software tools and mathematical modeling
enabled the study of elections with four alternatives. Bruns and Söger (2015) and
Schürmann (2013) provide such results for Condorcet’s paradox, the Condorcet
efficiency of plurality and the similarity between plurality and plurality with runoff.
Schürmann (2013) further shows how symmetries in the formulation of the paradoxes
can be exploited to facilitate the corresponding computations. Finally, Bruns et al.
(2019b) study Condorcet and Borda paradoxes, as well as the Condorcet efficiency
of plurality voting with runoff.

For the CLP (sometimes also referred to as “Borda’s paradox”) many quantitive
results are known (Gehrlein and Lepelley, 2011; Diss andGehrlein, 2012), which are,
however, limited to simple voting rules and scoring rules in particular. These results
also include some empirical evidence for the paradox under plurality (Gehrlein
and Lepelley, 2011, p.15) and suggest that it is an unlikely yet possible problem
in practice. Interestingly, the CLP for Condorcet extensions has—to the best of our
knowledge—only been considered by Plassmann andTideman (2014). However, they
restrict their analysis to the 3-alternative case and find that the CLP never occurs,
which is unsurprising since provably four alternatives are required for the Condorcet
extensions they considered. In a more recent work, Bubboloni et al. (2019) consider
the probability of the CLP for extensions of MaxiMin to the committee selection
setting.

The ACP appears to have received less attention in the quantitative literature
on voting paradoxes. Some limit probabilities for scoring rules were obtained by
Gehrlein and Fishburn (see Gehrlein and Lepelley, 2011, p. 282–284). Fishburn
(1974) experimentally studied a variant of this paradox called “winner turns loser
paradox” for Borda’s rule under Impartial Culture. For Condorcet extensions, Plass-
mann and Tideman (2014) considered another variant of the ACP under a spatial
model, but again limit their experiments to three alternatives. These few results al-
ready seem to indicate that the ACP might occur even under realistic assumptions.
However, there are no results for more than three alternatives, Condorcet extensions,
and the ACP in its full generality.

3 Models and Definitions

Let � be a set of < alternatives and # = {1, . . . , =} a set of voters. Each voter
is equipped with a (strict) preference relation �8 , i.e., a complete, transitive, and
asymmetric binary relation on �. We read G �8 H as voter 8 (strictly) preferring
alternative G to alternative H.
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A (preference) profile (or an election) is an =-tuple of preference relations and
will be denoted by ' := (�1, . . . , �=). We will sometimes consider the restriction
of �8 to a subset of alternatives � ⊆ �, called an agenda. Such a restriction will be
denoted by ' |� := (�1 |�, . . . , �= |�).

3.1 Stochastic Preference Models

In this chapter we consider five of the most common stochastic preference models.
These models vary in their degree of realism. Impartial culture (IC) and impartial
anonymous culture (IAC), for example, are usually considered as rather unrealistic.
However, the simplicity of thesemodels enables the use of analytical tools that cannot
be applied to the other models. IC and IAC typically yield higher probabilities for
paradoxes than other preference models and can therefore be seen as worst-case
estimates (see, e.g., Regenwetter et al., 2006). We only give informal definitions
here; for more extensive treatments see, e.g., Critchlow et al. (1991) and Marden
(1995).

Impartial culture. The most widely-studied distribution is the so-called impartial
culture (IC), under which every possible preference relation has the same probability
of 1

<! . Thus, every preference profile is equally likely to occur.

Impartial anonymous culture. In contrast to IC the impartial anonymous culture
(IAC) is not based on the probabilities of individual preferences but on the prob-
abilities of whole profiles. Under IAC one assumes that each possible anonymous
preference profile on = voters is equally likely to occur. A more formal definition is
given in Section 4.1.

Mallows-q model. In Mallows-q model, the distance to a reference ranking (or
ground truth) is measured by means of the Kendall-tau distance1 and a parameter
q is used to indicate the dispersion. The case of q = 1 means absolute dispersion
and coincides with IC, the case q = 0 corresponds to no dispersion and every voter
always picks the “true” ranking. We chose q = 0.8 to simulate voters with relatively
bad estimates, which leads to situations in which paradoxes are more likely to occur.

Pólya-Eggenberger urn model. In the Pólya-Eggenberger urn model, each possible
preference relation is represented by a ball in an urn from which individual prefer-
ences are drawn. After each draw, the chosen ball is put back and U ∈ N0 new balls
of the same kind are added to the urn. While the urn model subsumes both impartial
culture (U = 0) and impartial anonymous culture (U = 1), we set U = 10 to obtain a
reasonably realistic interdependence of individual preferences.

Spatial model. In the spatial model alternatives and agents are placed in a multi-
dimensional space uniformly at random and the agents’ preferences are then deter-
mined by the Euclidean distances to the alternatives (closer alternatives are preferred

1 The Kendall-tau distance counts the number of pairwise disagreements.
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tomore distant ones). The spatialmodel is considered particularly realistic in political
science where the dimensions are interpreted as different aspects of the alternatives
(Tideman and Plassmann, 2012). We chose the simple case of two dimensions for
our analysis.2

3.2 Voting Rules

A voting rule is a function 5 that maps a preference profile to a non-empty set of
winners. For a preference profile ', let 6GH := |{8 ∈ # : G �8 H}| − |{8 ∈ # : H �8 G}|
denote the majority margin of G against H. A very influential concept in social
choice is the notion of a Condorcet winner, an alternative that wins against any other
alternative in a pairwise majority contest. Alternative G is a Condorcet winner (CW)
of a profile ' if 6GH > 0 for all H ∈ � \ {G}. Conversely, alternative G is a Condorcet
loser (CL) if 6HG > 0 for all H ∈ � \ {G}. Neither CWs nor CLs necessarily exist, but
whenever they do they are unique. A voting rule 5 is called a Condorcet extension if
5 (') = {G} whenever G is the CW in '.

In the following paragraphs we briefly introduce the voting rules considered in
this chapter.

Borda’s Rule. Under Borda’s rule each alternative receives from 0 to |�| − 1
points from each voter (depending on the position the alternative is ranked in). The
alternatives with highest accumulated score win.

MaxiMin. The MaxiMin rule is only concerned with the highest defeat of each
alternative in a pairwise majority contest. It yields all alternatives G which have the
maximal value of minH∈� 6GH .

Young’s Rule. Young’s rule yields all alternatives that can be made a CW by
removing a minimal number of voters.

Dodgson’s Rule. Dodgson’s rule selects all alternatives that can be made a CW
by a minimal number of pairwise swaps of adjacent alternatives in the individual
preference relations.

Tideman’s Rule. Tideman’s rulewas introduced as an approximation of Dodgson’s
rule by Tideman (1987). It yields all alternatives G for which the sum of pairwise
majority defeats

∑
H∈�max(0, 6HG) is minimal.

Copeland’s Rule. Copelands’s rule selects all alternatives where the number of
majority wins plus half the number of majority draws is maximal.

Essential Set. Consider the symmetric two-player zero-sum game � given by the
skew-symmetricmatrixwith entries 6GH for all pairs of alternatives G, H. The essential

2 In a related study, Brandt and Seedig (2016) have found that the number of dimensions does not
seem to have a large impact on the results as long as it is at least two.
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set is the set of all alternatives that are played with positive probability in somemixed
Nash equilibrium of �.3

Except for Borda’s rule, all presented voting rules are in fact Condorcet extensions.
While Borda’s rule, MaxiMin, and the essential set can be computed efficiently,
Young’s rule and Dodgson’s rule have been shown to be computationally intractable.
The essential set is one of the few voting rules that do suffer from neither the CLP
nor the ACP, and is merely included as a reference. For more formal definitions and
computational properties of these rules, we refer to Brandt et al. (2016).

3.3 Voting Paradoxes

In this chapterwe focus on two voting paradoxeswhose occurrence can be determined
given a voting rule 5 and a preference profile '.

Let 5 be a voting rule. Formally, a (voting) paradox is a characteristic function
that maps a preference profile to 0 or 1. In the latter case, we say the paradox occurs
for voting rule 5 at profile '.

The Condorcet Loser Paradox (CLP) occurs when a voting rule selects the CL as
a winner.

Definition 1 Given a voting rule 5 the Condorcet loser paradox CLP 5 is defined as

CLP 5 (') =
{
1 if 5 (') contains a CL
0 otherwise.

The agenda contraction paradox (ACP) occurs when reducing the set of alterna-
tives, by eliminating unchosen alternatives, influences the outcome of an election.

Definition 2 Given a voting rule 5 the agenda contraction paradox ACP 5 is a
paradox defined as

ACP 5 (') =
{
1 if 5 (' |�) ≠ 5 (') for some � ⊇ 5 (')
0 otherwise.

4 Quantifying Voting Paradoxes

In this section we present the three general approaches for quantifying voting para-
doxes: the analytical approach via Ehrhart theory, the experimental approach via
computer simulations, and the empirical approach via real-world data.

3 These mixed equilibria are also known as maximal lotteries in probabilistic social choice.
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4.1 Exact Analysis via Ehrhart Theory

Anonymous preference profiles only count the number of voters for each of the <!
possible rankings on < alternatives. An anonymous preference profile can hence be
viewed as an integer point in a space of 3 := <! dimensions. Formally, the set (<,=
of anonymous preference profiles on < alternatives with = voters can be identified
with the set of all integer points I = (I1, . . . , I<!) ∈ Z<! which satisfy

I8 ≥ 0 for all 8 ∈ {1, . . . , <!}, and
<!∑
8=1

I8 = =.

Under IAC each anonymous preference profile is assumed to be equally likely to
occur. Hence, in order to determine the probability of a paradox under IAC it is
enough to compute the number of points belonging to preference profiles in which
the paradox occurs and compare them to the total number of points in (<,=, which
is known to be |(<,= | =

(<!+=−1
<!−1

)
.4

In this framework, many paradoxes - can be described with the help of linear
constraints, i.e., the set of points belonging to the event can be described with the
help of (in)equalities, a polytope. For variable =, this approach then describes a
dilated polytope %= = =% := {=x : x ∈ %}. Hence, we know that the probability of a
paradox -= under IAC is given by:

P(-=) =
|=% ∩ Z3 |
|(<,= |

.

and we can determine the probability of (many) voting paradoxes under IAC by
evaluating the function ! (%, =) := |=%∩Z3 |, which describes the number of integer
points inside the dilation =%. This can be donewith the help of Ehrhart theory. Ehrhart
(1962) was the first to show that ! (%, =) can be described by special functions, called
quasi- or Ehrhart-polynomials. A function 5 : Z → Q is a quasi-polynomial of
degree 3 and period @ if there exists a list of @ polynomials 58 : Z→ Q (0 ≤ 8 < @)
of degree 3 such that 5 (=) = 58 (=) if = ≡ 8 mod @.

Quasi-polynomials can be determined with the help of computer programs such
as LattE (De Loera et al. (2004)) or Normaliz (Bruns et al. (2019a)). Unfortunately,
the computation of our quasi-polynomials is computationally very demanding, espe-
cially because the dimension of the polytopes grows super-exponentially in the num-
ber of alternatives. This limits analytical results under IAC to rather small numbers
of alternatives. To the best of our knowledge, Normaliz is the only program which
is able to compute polytopes corresponding to elections with up to four alternatives.
And even Normaliz is not always able to compute the whole quasi-polynomial, but
sometimes we had to resort to computing the leading coefficients only of the poly-
nomial, which fortunately suffices for determining the limit probability of a paradox

4 For most preference models other than IAC this approach does not work. While for specific com-
binations of (simple) distributions and voting rules there are some highly tailor-made computations
in the literature (cf. Section 2), these have to be redesigned for each individual setting.
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Paradox Voting rule(s) Result

CLP
Condorcet extensions upper bound (∀= ∈ N)

MaxiMin probability (∀= ∈ N)
Tideman’s rule limit prob. (=→∞)

ACP MaxiMin limit prob. (=→∞)

Table 1 Theoretical results obtained via Ehrhart theory (for four alternatives and under IAC)

when the number of voters goes to infinity. The problem of calculating the limit
probability is equivalent to computing the volume of polytopes, for which there are
also other software solutions (e.g., Convex by Franz (2016))

An overview of our analytical findings obtained in this way is provided in Table 1.

Finding a Quasi-polynomial for MaxiMin

As an example for the method just described, we consider the CLPMaxiMin in 4-
alternative elections under IAC, the probabilities of which can be computed from a
quasi-polynomial with degree 23 and a period of 5,040.5

In order to determine the polynomial, we first need to describe the corresponding
polytope with equalities and inequalities. Recall the definition of MaxiMin from
Section 3.2:

5MaxiMin (') := arg max
G∈�

min
H∈�

6GH .

For CLPMaxiMin (') = 1 the CL of ' has to have the lowest highest defeat. Formally,
there is G ∈ � such that for all H ∈ �\{G},

6HG > 0, and (1)
max

I∈�\{G }
6IG ≤ max

I∈�\{H }
6IH . (2)

Now let � = {0, 1, 2, 3} and assume G = 3. We then have that 603 , 613 , 623 > 0,
which implies maxI∈�\{3 } 6I3 > 0. Furthermore,

max
I∈�\{H }

6IH > 0 for all H ∈ {0, 1, 2},

from which it follows that either 601 , 612 , 620 > 0 or 610, 621 , 602 > 0. In both
cases there is a majority cycle between 0, 1, and 2. Due to symmetry we can choose
one direction of the cycle arbitrarily and assume 601 , 612 , 620 > 0. Then,

max
I∈�\{0}

6I0 = 620, max
I∈�\{1}

6I1 = 601 , and max
G∈�\{2 }

6I2 = 602 .

5 In theory, the analysis can be adapted to also cover more complex rules (e.g., Dodgson’s and
Young’s rule, which involve solving an integer linear program). It is unclear, however, how one
would translate their definitions to linear inequalities.
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Condition (1) is already represented in the form of linear inequalities. In order to
model condition (2) we determine maxI∈�\{3 } 6I3 and distinguish cases for the
seven possible outcomes. The inequalities for the case maxI∈�\{3 } 6I3 = {603} are

603 − 613 > 0 and 603 − 623 > 0.

Condition (2) furthermore yields

620 − 603 ≥ 0, 601 − 603 ≥ 0, and 612 − 603 ≥ 0.

Each case belongs to a different polytope and the polytopes are pairwise distinct,
so we can compute each quasi-polynomial separately and later combine them to
one. To get the final polynomial we have to multiply by eight for the four different
possible choices of a CL and the two possible directions of the majority cycle. This
then enables us to efficiently evaluate the exact probabilities for any number of voters.
The results are depicted in Figure 2. The leading coefficient of the quasi-polynomial
can also be used to determine the limit probability which is given by

P(CLPMaxiMin = 1 | < = 4, =→∞) = 8 · 485052253637930099

6443662124777472000000
≈ 0.06%.

4.2 Experimental Analysis

As we will see, simulating elections with the help of computers is a viable way of
achieving very good approximations for the probabilities we are looking for. It even
turns out that the results of our simulations are almost indistinguishable from the
theoretical result obtained via Ehrhart theory (with the exception of the limit case,
which cannot be realized via simulations).

More specifically, the experimental approach works as follows: a profile source
creates random preference profiles according to a specific preference model. The
profiles are then used to compute the winner(s) according to a given voting rule and
to determine if the paradox occurs. Any such experiment is carried out for each pair
of = and < and repeated frequently. In many cases in which we covered a wide range
of voters, we did not consider every possible value of = but, more economically, only
simulated the values: 1–30, 49–51, 99–101, 199–201, 499–501, 999–1,001.

Since we are particularly concerned about the statistical significance of our ex-
perimental results, we also computed 99%-confidence intervals for each data point
we generated. To this end, we used the binofit function in Matlab which is based
on the standard approach by Clopper and Pearson (1934). It shows that, based on our
sampling rate of 105 and 106, respectively, the 99%-confidence intervals are pleas-
antly small. Hence, even though they are depicted in all of the figures throughout
this chapter, sometimes it can be difficult to recognize them.
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4.3 Empirical Analysis

Themost valuable quantification of voting paradoxes would be their actual frequency
in real-world elections. As mentioned before, real-world election data is generally
relatively sparse, incomplete, and inaccurate. This makes empirical research on
this topic rather difficult. Otherwise, the empirical approach strongly resembles the
experimental approach.

For this chapter we used two sources of empirical data. First, we used the 314
profiles with strict order preferences from the PrefLib library (Mattei and Walsh,
2013). Second, we had access to the 54,650 preference profiles over four alternatives
without a CW which belong to the roughly 11 million 4-alternative elections which
Mattei et al. (2012) derived from the Netflix Prize data (Bennett and Lanning, 2007).
Non-existence of Condorcet winners is a prerequisite for the paradoxes we study.

5 Condorcet Loser Paradox

In this section we present our findings on the CLP. We conclude that—even though
the CLP is possible in principle—it is so unlikely that it cannot be used as a serious
argument against any of the Condorcet extensions we considered.

5.1 An Upper Bound

Before analyzing the CLP for concrete voting rules, we discuss an upper bound
valid for all Condorcet extensions. For a Condorcet extension to choose the CL
a profile obviously has to satisfy two conditions. First, there has to exist a CL
in the profile. Second, no CW may exist in the profile. In the case of 4-alternative
elections—which is the first interesting case—we can compute the quasi-polynomial
via Ehrhart theory and hence know the exact probabilities for any number of voters.
Similar to the example in Section 4.1, we can assume that alternative 3 is the CL
and obtain the inequalities 603 , 613 , 623 > 0. The event that none of the remaining
alternatives is the CW can be formalized as

(610 ≥ 0 ∨ 620 ≥ 0) ∧ (601 ≥ 0 ∨ 621 ≥ 0) ∧ (602 ≥ 0 ∨ 612 ≥ 0).

This leads to 27 satisfiable cases all belonging to disjoint polytopes, since 6GH ≥ 0
and ¬(6GH ≥ 0) are exclusive. Each quasi-polynomial can be computed separately
and (attributing for the four different possible CLs) they can be combined to a single
quasi-polynomial, which has degree 23 and contains 24 polynomials. The coefficients
take up several pages and we omit them here. The resulting probabilities for up to
1, 000 voters—and a comparison with the results of an experimental analysis—can
be obtained from Figure 1. The value of the limit probability is approximately 8%.
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100 101 102 103
0%

10%

20%

Number of voters

4 alternatives, IAC

Experimental (even)
Experimental (odd)
Analytical
Analytical (limit)

Fig. 1 Probability of the event that a Condorcet extension could choose a CL in 4-alternative
elections under IAC

Especially for small even numbers of voters, where the probability is around 20%,
the upper bound is too high to discard the CLP for Condorcet extensions altogether,
and even the limit probability of 8% is relatively large. Also, for an increasing number
of alternatives this problem does not vanish (for elections with 50 and 51 one voters
and up to 100 alternatives the probabilities range between 5% and 25%).6

Note that differences between odd and even number of voters were to be expected
since even numbers allow for majority ties, which have significant consequences for
the paradoxes; this effect decreases for larger electorates. In the specific case under
consideration, the upper bound is generally higher for an even number of voters
because the much higher likelihood of not having a CW more than counterbalances
the lower likelihood of having a CL.

5.2 Results under IAC

Despite the high upper bounds from the previous section, the picture is quite clear for
concrete Condorcet extensions: even under IAC, the risk of the considered Condorcet
extensions selecting the CL is very low, as shown in Figure 2 for 4-alternative
elections. The highest probability was found for CLPMaxiMin with 2.2% for three
voters (CLPYoung with about 0.9%). The limit probability of CLPMaxiMin, with 0.06%
is so low that for sufficiently large electorates it would occur in only one out of
10,000 elections. The same seems to hold for the limit probability for CLPYoung.

6 These upper bounds turn out to be relatively independent from the underlying preference distri-
bution (among the models we considered, cf. Section 5.3).
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The probability of CLPDodgson is even significantly lower, with a maximum of about
0.01% in elections with 9,999 voters. We could determine the limit probability of
0.01% only for an approximation of Dodgson’s rule by Tideman (1987), which seems
to be close to that for Dodgson’s rule, based on our experimental data.

When increasing the number of alternatives the probabilities drop even further.
For elections with more than ten alternatives they reach a negligibly small level of
less than 0.005% for all considered rules and in no simulations with twelve or more
alternatives we could find any occurrence of the paradox.

4 alternatives, IAC
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Dodgson (even)
Tideman (limit)

Fig. 2 Comparison between CLP probabilities for MaxiMin, Young’s rule (left) and Dodgson’s
rule (right) under IAC in 4-alternative elections

5.3 Results under Other Preference Models

Figure 3, as one would expect, shows that under more realistic assumptions the
probability of the CLP decreases further in 4-alternative elections with 50/51 voters,
with the highest probability occurring under the unrealistic assumption of IC and the
lowest probability under what may be the most realistic model in many settings, the
spatial model. In our experiments, Dodgson’s rule never selected a CL in the spatial
model.

Similarly, we could not find any occurrence of the CLP in real-world data, which
may be considered the strongest evidence that the CLP virtually never materializes
in practice.7

7 We tested 314 preference profiles with strict orders from the PrefLib library as well as the roughly
11 million 4-alternative elections which Mattei et al. (2012) derived from the Netflix Prize data.
While about 54,000 of those elections were susceptible to the CLP, it never occurred under the
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0% 0.05% 0.1% 0.15% 0.2% 0.25%

Spatial

Mallows
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IAC

IC

MaxiMin, 4 alternatives

50 voters
51 voters

Fig. 3 CLP probabilities in 4-alternative elections for varying preference models and MaxiMin

6 Agenda Contraction Paradox

Recall that the agenda contraction paradox (ACP) occurs when a reduced set of alter-
natives (created by the unavailability of losing alternatives) influences the outcome
of an election. For many cases, it may be considered a generalization of the CLP as
the following argument shows. Suppose the CL G is uniquely selected by a voting
rule which implements majority rule on 2-alternative choice sets. Then restricting �
to {G, H} for some alternative H ≠ G yields the new winner H (since 6GH > 0).

As we will see, the ACP is much more of a practical problem than the CLP. The
picture, however, is not black and white. Whether or not it is a serious threat depends
on the voting rule, the underlying preference distribution, and on the parity of the
number of voters.

6.1 Varying Voting Rules

The ACP probability strongly varies for different voting rules (see Figure 4). Borda’s
rule generally exhibits the worst behavior of the rules studied, with probabilities
of up to 56%, and with 34% for large electorates with 1, 000 voters. In contrast,
Copeland’s rule is quite robust to the ACP for large electorates (with only about 8%
occurrence probability for 1, 000 voters).8

rules we considered in this chapter. In contrast, under plurality it already occurred in twelve out of
the 314 PrefLib-instances.
8 For small even numbers of voters, Copeland’s rule also frequently fails agenda contraction, which
is also visible in Figure 5 and explains the seemingly high values in Table 2.
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The reason for this gap between Borda’s and Copeland’s rule appears to be
two-fold: First, Condorcet extensions are safe from this paradox as long as a CW
exists; Borda’s rule, by contrast, is not. Second, the discriminatory power of voting
rules (i.e., their ability to select small winning sets) strongly supports the paradox. As
soon as a single majority-dominated alternative is selected, the ACP has to occur. For
large numbers of voters, this is in line with Copeland’s rule being least discriminating
among those evaluated. The essential set is among the most discriminating known
voting rules immune to the ACP, but presumably less discriminating than Copeland’s
rule.

The behavior of MaxiMin is almost identical to that of Young’s and Dodgson’s
rule. Confirming our approximate “limit” results of 1, 000 voters, we were able to
analytically compute the limit probability for MaxiMin as 331

2048 ≈ 16%. This is
in perfect congruence with the (rounded) values for MaxiMin, Young’s rule, and
Dodgson’s rule.

It should also be noted that with fewer than 100 voters, the parity of the number of
voters plays a major role. For even numbers, significantly higher probabilities arise
(which is particularly true for Copeland’s rule, see above). At least part of this can
be explained by a reduced probability for CWs in these cases.

For more alternatives (see the right-hand side of Figure 4), the relative behavior
remains vastly unchanged with probabilities further increasing to values larger than
40% to 80% (mostly since the likelihood of a CW decreases roughly at the same
rate).

100 101 102 103
0%

20%

40%

60%

80%

Number of voters

4 alternatives, IAC

2 4 6 8 10

Number of alternatives

50/51 voters, IAC

MaxiMin (even) Borda (even) Copeland (even) Dodgson (even)
MaxiMin (odd) Borda (odd) Copeland (odd) Dodgson (odd)
MaxiMin (limit)

Fig. 4 Comparison between ACP probabilities for different voting rules under IAC



16 F. Brandt, C. Geist, and M. Strobel

6.2 Varying Preference Models

Figure 5 extends the analysis of the previous section by additionally considering
preference models beyond IAC. The overall picture regarding the different rules
remains the same. For large electorates Copeland’s rule outperforms the other rules,
whereas Borda’s rule performs worst. Regarding the different preference models,
three classes emerge from Figure 5.

100 101 102 103
0%

20%

40%

60%

Number of voters

Borda, 4 alternatives

100 101 102 103

Number of voters

Copeland, 4 alternatives

100 101 102 103
0

20

40

60

Number of voters

MaxiMin, 4 alternatives

100 101 102 103

Number of voters

Dodgson, 4 alternatives

IC IAC Urn Spatial Mallows

Fig. 5 Comparison between ACPBorda, ACPCopeland, ACPMaxiMin, and ACPDodgson for varying pref-
erence models in 4-alternative elections; the values of ACPYoung are omitted since they strongly
resemble the ones of ACPMaxiMin and ACPDodgson.

First, for Mallows-q we observe probabilities that are vanishing with increased
numbers of voters. Under the spatial model this is true as well, with the surprising
exception of Borda’s rule, for which the picture looks completely different and
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Paradox Condorcet loser paradox (CLP) Agenda contraction paradox (ACP)

Model IAC IC IAC IC

= {1, . . . , 1000} {50, 51} {50, 51} {1, . . . , 1000} {50, 51} {1, . . . , 1000}
< 4 {1, . . . , 10} 4 4 {1, . . . , 10} 4

Essential set 0% 0% 0% 0% 0% 0%
Borda 0% 0% 0% 56% 84% 59%

Copeland 0% 0% 0% 56% 63% 58%
Dodgson 0.01% 0.005% 0.005% 21% 59% 23%
Young 1% 0.15% 0.25% 21% 59% 23%

MaxiMin 2.2% 0.15% 0.25% 21% 59% 23%

Table 2 Rounded maximal CLP and ACP probabilities which occurred during our simulations

the probability does not go below 20% in the spatial model. Presumably, this can
be explained by Borda’s inability to select the CW in this setting, a hypothesis
that deserves further study, however. On the contrary, the other rules appear to be
benefitting from the fact that the existence of a CWbecomes very likely undermodels
with high voter interdependence.

Second, as expected, the assumption of IC serves as an upper bound for all other
preference models. The results for IAC are not much lower, fostering the impression
that IAC could also be an unrealistic upper bound.

Third, the urn model yields much lower values compared to IAC and IC. The
absolute numbers, however, are still beyond acceptable levels (between 4% and 23%
for 1,000 voters).

The findings in the empirical data corroborate our experimental findings. In
PrefLib the ACP occurs 17 times for Borda, three times for Copeland and exactly
once for MaxiMin as well as Young’s and Dodgson’s rule. In the Netflix data set,
where the number of voters is at least 350, Copeland performs much better than the
other Condorcet extensions (4, 400 compared to 18, 470 occurrences for the other
Condorcet extensions). Borda’s rule virtually always suffers from the ACP on this
data set: there are 54, 620 instances of ACPs already when considering profiles that
do not have a CW (there are 54, 650 of such).

7 Conclusion

We investigated the likelihood of the CLP and the ACP using Ehrhart theory, com-
puter simulations, and empirical data. The CLP is often cited as a major flaw of some
Condorcet extensions such as Dodgson’s rule, Young’s rule, and MaxiMin. For ex-
ample, Fishburn regards Condorcet extensions that suffer from the CLP (specifically
referring to the three rules mentioned above) as “ ‘dubious’ extensions of the basic
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Condorcet criterion” (Fishburn, 1977, p. 480).9 While this is intelligible from a the-
oretical point of view, our results have shown that the CLP is of virtually no practical
concern. The ACP, on the other hand, frequently occurs under various distributional
assumptions about the voters’ preferences. The extent to which it is real threat, how-
ever, strongly depends on the voting rule, the underlying distribution of preferences,
and, surprisingly, the parity of the number of voters. Our main quantitative results
for the worst case are summarized in Table 2.
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