Key question	How many voters are required to obtain a certain majority relation?
This paper	• Powerful SAT-based technique to solve the question of k-majority digraphs for arbitrary k
• Experimental perspective	
• Seems like very few voters suffice in most cases	

Related Work

- Known theoretical insight: Any digraph can be realized as the majority relation of a preference profile with
 - $O(n^3)$ voters (McGarvey, 1953)
 - $O(n \log n)$ voters (Erdős and Moser, 1964) (non-constructive)
 - $\leq n - \log n + 1$ voters (Fiol, 1992)
- Successful Applications of SAT in Social Choice Theory
 - Verification of well-known impossibilities (Tang and Lin, 2009)
 - Automated theorem search for ranking sets of objects (G. and Endriss, 2011)
 - (Im)possibility theorems for strategyproof majoritarian social choice functions (B. and G., 2014)
- Finding preference profiles of given Condorcet dimension (G., 2014)

Preliminaries

- Preference profiles $R = (R_1, R_2, \ldots, R_k)$
 - Finite set of n alternatives, k voters
 - Voters $i \in \{1, 2, \ldots, k\}$ with linear preference relations R_i over alternatives
- Majority relation \triangleright_R
 - $a \triangleright_R b$ iff $|\{i : a R_i b\}| > |\{i : b R_i a\}|$
 - Can be represented by a digraph G (we then say: R induces G)
- Problem: Given a digraph G and a positive integer k, is there a preference profile with k voters that induces G? (We then say: G is a k-majority digraph)
- Voter complexity of G: minimal k such that G is a k-majority digraph

Classical Approach: “Characterize and Conquer”

- Lemma. (B. et al., 2013)
 A digraph (A, \triangleright) is a 3-majority digraph if and only if \triangleright is complete and can be partitioned into $\triangleright_1 \cup \triangleright_2 = \triangleright$ such that
 - (A, \triangleright_1) is a 2-majority digraph and
 - \triangleright_2 is acyclic
 - Whether (A, \triangleright) is a 2-majority digraph can be checked efficiently (Yannakakis, 1982; Dushnik and Miller, 1941)

SAT-based Approach

- Encode any given problem instance into SAT (propositional logic)

Exhaustive Analysis

- Tournaments that are 3-inducible
 - All tournaments with $n \leq 7$
 (confirming a conjecture by Shepardson and Tovey, 2009)
- Tournaments that are 5-inducible
 - All tournaments with $n \leq 10$
 - All (semi-)regular tournaments with $n \leq 12$
 - Millions of instances of tournaments with sizes $10 \leq n \leq 100$
- Could not find a tournament that is not 5-inducible
 - Only aware of one concrete tournament with \sim600 million nodes
 - Existence of a 42-node tournament from pigeonhole principle

Empirical Analysis (PrefLib)

<table>
<thead>
<tr>
<th>Tournament (100% = 354)</th>
<th>Incomplete digraphs (100% = 185)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not feasible: 1</td>
<td>Not feasible: 99</td>
</tr>
<tr>
<td>3-inducible: 57</td>
<td>2-inducible: 25</td>
</tr>
<tr>
<td>5-inducible: 2</td>
<td>4-inducible: 3</td>
</tr>
<tr>
<td>Transitive: 294</td>
<td>6-inducible: 48</td>
</tr>
<tr>
<td>8-inducible: 10</td>
<td></td>
</tr>
</tbody>
</table>

Stochastic Analysis

- Sampled majority digraphs (with 51 voters) according to 5 different stochastic models (average of 30 runs)

SAT-based Approach

- SAT-based implementation significantly outperforms classical approaches, e.g., running times for $k=3$ depending on n:

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>20</th>
<th>50</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAT</td>
<td>$< 0.1s$</td>
</tr>
<tr>
<td>2-PARTITION</td>
<td>$< 0.1s$</td>
<td>$< 0.1s$</td>
<td>$2s$</td>
<td>1200s</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Exhaustive Analysis

- Tournaments that are 3-inducible
 - All tournaments with $n \leq 7$
 (confirming a conjecture by Shepardson and Tovey, 2009)
- Tournaments that are 5-inducible
 - All tournaments with $n \leq 10$
 - All (semi-)regular tournaments with $n \leq 12$
 - Millions of instances of tournaments with sizes $10 \leq n \leq 100$
- Could not find a tournament that is not 5-inducible
 - Only aware of one concrete tournament with \sim600 million nodes
 - Existence of a 42-node tournament from pigeonhole principle

Empirical Analysis (PrefLib)

<table>
<thead>
<tr>
<th>Tournament (100% = 354)</th>
<th>Incomplete digraphs (100% = 185)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not feasible: 1</td>
<td>Not feasible: 99</td>
</tr>
<tr>
<td>3-inducible: 57</td>
<td>2-inducible: 25</td>
</tr>
<tr>
<td>5-inducible: 2</td>
<td>4-inducible: 3</td>
</tr>
<tr>
<td>Transitive: 294</td>
<td>6-inducible: 48</td>
</tr>
<tr>
<td>8-inducible: 10</td>
<td></td>
</tr>
</tbody>
</table>

Stochastic Analysis

- Sampled majority digraphs (with 51 voters) according to 5 different stochastic models (average of 30 runs)