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Abstract Given a preference profile, a social dichotomy function partitions the set of
alternatives into a set of approved alternatives and a set of disapproved alternatives.
The Borda mean rule approves all alternatives with above-average Borda score, and
disapproves alternatives with below-average Borda score. We show that the Borda
mean rule is the unique social dichotomy function satisfying neutrality, reinforcement,
faithfulness, and the quasi-Condorcet property.

1 Introduction

The objective of social choice is typically to choose the best alternatives from a set of
feasible alternatives based on the preferences of various voters. Functions that describe
how this choice is made are called social choice functions. Hence, a social choice
function partitions the set of alternatives into winning alternatives and non-winning
(or losing) alternatives. Suppose instead that the goal is to split the alternatives into
good alternatives and bad alternatives with the separation between both sets being as
large as possible. Similarly, one might ask both sets to be as homogeneous as possible.
Duddy et al. (2014) argued that social choice functions are not the right tool for this
task. Let us give an example to illustrate why this is the case. Consider a class of
students that is to be divided into beginners and advanced learners based on how they
are ranked by teachers. Presumably, the goal should be to form two groups of students
such that the differences in skill level within each group are as small as possible. If
all teachers agree on their top-ranked student, any reasonable social choice function
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would uniquely choose the unanimously top-ranked student. Hence, the group of
advanced learners would consist of only this one student; all other students are put
into the beginners group. In our example this is likely to be an undesired result, since
the differences in skill within the beginners group would be barely reduced compared
to the entire class.

Thus, we need to drop some of the properties that seem appealing for social choice
functions. A more suitable tool for our task are social dichotomy functions (Duddy
et al., 2014), which yield ordered 2-partitions of the alternatives. We interpret ordered
2-partitions as having the approved alternatives in the first set and the disapproved
alternatives in the second set. In contrast to selecting the best alternatives, there is
inherent symmetry in the problem of finding a good separation; in particular, rules
should usually satisfy reversal symmetry: if all of the input preferences are reversed,
then the output will also be reversed, so that approved and disapproved alternatives
swap place.

The social dichotomy function that we consider in this paper is the Borda mean
rule which outputs all dichotomous weak orders in which all alternatives with above-
average Borda score are approved, and all alternatives with below-average Borda score
are disapproved. If there are alternatives with precisely average Borda score, then the
rule returns several orders with all ways of breaking the ties. This rule was introduced
by Duddy et al. (2014) and further discussed by Duddy et al. (2016) and Zwicker
(2016). Notice that the Borda mean rule satisfies reversal symmetry.

Reversal symmetry (similarly defined) is also a natural property for social pref-
erence functions, which return a set of linear orders of the alternatives based on the
voters’ preferences. We will see that social dichotomy functions are more closely
related to social preference functions than to social choice functions. Kemeny’s rule
(Kemeny, 1959) is an example of a social preference function that has been very influ-
ential in social choice theory and it is widely seen as an attractive rule with desirable
properties (e.g., Young, 1995). Given a preference profile over an alternative set A,
the rule assigns to each possible preference relation < a Kemeny score: the order gets
a point for each voter and each pair of alternatives a,b ∈ A such that a � b and the
voter agrees with this choice; if the voter disagrees, the order loses a point. Preference
relations with maximum score are called Kemeny rankings. Kemeny’s rule returns
exactly the set of all linear orders that are Kemeny rankings.

Zwicker (2016) introduced the idea of using Kemeny scores to define aggregation
rules for other output types. For example, if we consider the domain of preference
relations that have a unique most-preferred element and that are indifferent between
all other alternatives, then the rule selecting the orderings from this domain of highest
Kemeny score outputs the relations with the winners of Borda’s rule as most-preferred
alternatives. In his paper, Zwicker (2016) proposed the k-Kemeny rule which returns
the k-chotomous weak order of highest Kemeny score; a preference relation < is
called k-chotomous if its induced indifference relation ∼ partitions A into at most k
indifference classes: thus, they define an ordered k-partition. In particular, 2-chotomous
orders are usually called dichotomous; these are the orders that partition the alternatives
into a set of approved and a set of disapproved alternatives. Hence, the 2-Kemeny rule
is a social dichotomy function. Duddy et al. (2014) showed that the 2-Kemeny rule is
identical to the Borda mean rule. This equivalent definition of the Borda mean rule
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suggests that it is a good tool for finding dichotomies that maximize the separation
between the set of approved and the set of disapproved alternatives.

Social choice theory abounds with different proposals for voting rules; which
of them should we choose to use? Axiomatic characterizations provide some of the
strongest reasons in favor of using certain rules. For example, Kemeny’s rule is largely
seen as a very attractive social preference function because of its characterization
by Young and Levenglick (1978) (though there are other reasons as well). In this
paper, we present an axiomatic characterization of the Borda mean rule, using the
same axioms as the characterization of Kemeny’s rule by Young and Levenglick
(1978), showing that the above argument in favor of Kemeny’s rule applies just as
well to the Borda mean rule, hopefully establishing its place as a very natural social
dichotomy function. In formal terms, our result is that the Borda mean rule is the unique
social dichotomy function satisfying neutrality, reinforcement, faithfulness, and the
quasi-Condorcet property.1 Our proof follows a similar structure as Young’s (1974a)
characterization of Borda’s rule. In particular, we use linear algebra and exploit the
orthogonal decomposition of weighted tournaments popularized by Zwicker (1991),
but we do not need any convex separation theorems.

Most of our axioms are commonly used, including the uncontroversial axioms
of neutrality (requiring that all alternatives are treated equally) and faithfulness (re-
quiring sensible behavior in single-voter situations). Reinforcement (often known as
consistency) is the workhorse of many axiomatic characterizations in social choice. It
is a variable-electorate axiom which requires that if the same dichotomy is selected
in two disjoint profiles, then it is still selected if we merge the two profiles into one.
Reinforcement is typically satisfied by rules which maximize a sum of the “scores”
that each voter assigns to a potential output. The most specialized axiom in our collec-
tion is the quasi-Condorcet property, introduced by Young and Levenglick (1978) and
also used by Barthélemy and Janowitz (1991). It requires that a “dummy alternative”
(one that is tied with every other alternative in a majority comparison) can move
around freely within the output relation. (We give a formal definition below.) Since
the quasi-Condorcet property implies the cancellation axiom, any rule satisfying it and
reinforcement can only depend on the weighted majority relation. The axioms in our
collection are independent, in the sense that our result does not hold if any of them is
dropped.

2 Related Work

The Borda mean rule was introduced and studied by Duddy et al. (2016) in the special
case of binary aggregation. In their setting, every voter holds a binary evaluation of the
alternatives or, equivalently, a dichotomous preference relation. A binary aggregation
function maps the voters preferences to an ordered tripartition of approved, tied, and
disapproved alternatives. In this setting, the Borda mean rule approves all alternatives
with above-average approval score, disapproves all alternatives with below-average

1 For expository purposes, Young and Levenglick (1978) introduce what they call the “Condorcet axiom”
which is a strengthening of faithfulness and quasi-Condorcet property. However, as they note, in their proof
this strengthening is not required.
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approval score, and alternatives with average approval score are tied. Duddy et al.
(2016) show that the Borda mean rule is the only binary aggregation function satisfying
faithfulness, consistency, cancellation, and neutrality. Their notion of consistency is
a version of Smith’s (1973) axiom of separability: if an alternative is approved by
one electorate and either approved or ranked as tied by another electorate, then
it is approved by the union of both electorates (and analogously for disapproved
alternatives).

Since social dichotomy functions can be viewed as returning a set of multiple
winners, the recent literature on multiwinner voting rules is related (for a survey,
see Faliszewski et al., 2017). Voting rules in that setting return a committee of k
alternatives, where k is fixed. Examples include the k-Borda rule (which returns the k
alternatives with highest Borda score, see Debord, 1992), as well as Chamberlin and
Courant’s (1983) rule and Monroe’s (1995) rule which aim for committees providing
proportional representation. Note that, in contrast, the definition of a social dichotomy
function does not impose any cardinality constraint on the set of approved candidates.
Axiomatic characterizations of multiwinner rules using consistency-type axioms are
provided by Skowron et al. (2016) for linear order preferences and by Lackner and
Skowron (2017) for approval preferences. The k-Borda rule was characterized by
Debord (1992); his result is close to ours. The k-Borda rule can be equivalently defined
as the rule that returns the Kemeny score-optimal dichotomous orders with exactly k
approved candidates.

Many characterizations of Borda’s rule as a social choice function, and of scoring
rules more generally, are available (for a survey, see Chebotarev and Shamis, 1998).
Young (1974a) gave the first characterization of Borda’s rule using reinforcement.
Hansson and Sahlquist (1976) gave an alternative proof that does not use linear
algebra. Young (1975) characterized the class of all scoring rules, and identified Borda
among them by adding an additional axiom. Smith (1973) independently found a
characterization of scoring rules as social welfare functions; Young (1974b) gave
an alternative proof of that result. Fishburn (1978) characterized approval voting
using reinforcement, which is just Borda’s rule restricted to profiles of dichotomous
preferences.

The Borda mean rule is also related to Nanson’s rule, which, in order to determine
a winner, repeatedly eliminates all alternatives with below-average Borda score (Niou,
1987). The Borda mean rule is just the result of stopping Nanson’s procedure after its
first round.

The quasi-Condorcet property, a key axiom in our characterization, was introduced
by Young and Levenglick (1978) for characterizing Kemeny’s rule. The axiom also
proved useful in the literature about the median procedure for aggregating other kinds
of data structures, such as for median semilattices (Barthélemy and Janowitz, 1991)
and median graphs (McMorris et al., 2000).

3 Definitions

Let N= {1,2, . . .} be a set of voters with preferences over a finite set A of alternatives,
where |A| = m. The preferences of an agent i ∈ N are given by a binary relation
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<i ⊆ A×A which is complete and transitive; such a relation is called a preference
relation. We will write a�i b if a <i b but b 6<i a, and a∼i b if both a <i b and b <i a.

A preference relation < is called a linear order if it is antisymmetric, so that a∼ b
only if a = b. A preference relation < is dichotomous if there is a partition (A1,A2)
of A into two subsets such that a � b if and only if a ∈ A1 and b ∈ A2. Note that
one of A1 and A2 may be empty, in which case <= A×A. Equivalently, an order is
dichotomous if and only if there are no three alternatives a,b,c ∈ A with a� b� c.
We will write R(A) for the set of all preference relations over A and D(A) for the set
of dichotomous orders. When the set A is clear from the context, we write R and D ,
respectively.

An electorate N is a finite and non-empty subset of N. The set of all electorates is
denoted by F (N). A preference profile P∈RN on electorate N is a function assigning
a preference relation to each voter in N. The preferences of voter i in profile P are
then denoted by <i. A social dichotomy function (SDF) f is a map from the set of all
profiles to non-empty subsets of D , so that f (P)⊆D for all profiles P.

The reverse
←−
< of a preference relation < is defined by (a,b) ∈←−< if and only if

(b,a) ∈ <. We extend this concept to sets of orders in the natural way, so that, for
example,

←−−
f (P) = {←−< : < ∈ f (P)}. If σ is a permutation of A, we can also naturally

define the relation σ(<) = {(σ(a),σ(b)) : (a,b) ∈<}, and extend this definition to
sets and profiles of preference relations.

Given a profile P over N, and two alternatives a,b ∈ A, let us write

nab := |{i ∈ N : a�i b}|

for the number of voters in P who strictly prefer a to b. The majority margin of a over
b is then given by mab := nab−nba; if mab > 0 then a majority of voters prefers a to b.
Note that the majority margins form a skew-symmetric m×m matrix with zeros on
the main diagonal (since mab =−mba).2 We can interpret this matrix as a weighted
tournament T whose vertices are given by the alternatives; there is an arc from a to b
if and only if mab > 0, and the arc is labelled by mab.

The (symmetric) Borda score β (a) of an alternative a ∈ A is given by

β (a) := ∑
b∈A\{a}

mab,

essentially the net weighted out-degree of a in the weighted tournament induced by P.
It is easy to see that β , thus defined, is a positive affine transformation of the Borda
scores as defined through the usual scoring vector (m−1,m−2, . . . ,1,0); indeed the
scoring-based Borda score of a is β (a)/2+ |N|(m− 1)/2. Thus, for example, the
same alternatives are Borda winners for either definition of Borda scores. Note that,
because the majority margins are skew-symmetric, we have ∑a∈A β (a) = 0, and so
the average (symmetric) Borda score of the alternatives is always 0, which makes it
convenient to deal with symmetric Borda scores.

2 A matrix M ∈ Rm×m is skew-symmetric if M =−MT .
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4 Borda Mean Rule

As we have mentioned in the introduction, there are several equivalent ways of defining
the Borda mean rule. The most straightforward definition uses the average Borda score
directly:

BM(P) =
{
< ∈D : a� b for all a,b ∈ A with β (a)> 0 and β (b)< 0

}
.

Thus, the Borda mean rule returns all dichotomous preference relations where alter-
natives with above-average Borda score are placed in the upper indifference class
and alternatives with below-average Borda score are placed in the lower indifference
class. (Recall that, for symmetric Borda scores, the average Borda score is always 0.)
Alternatives with exactly average Borda score are placed once in the upper and once
in the lower indifference class (so that multiple rankings are returned).

In the framework of Zwicker (2016), the Borda mean rule is obtained as a special
case of Kemeny’s rule with dichotomous output. Precisely, the Borda mean rule is the
rule returning the dichotomous preference relations of maximum Kemeny score:

BM(P) = argmax
<∈D

∑
x�y

mxy.

Hence, the Borda mean rule minimizes the aggregate distance of < to the voters’
preferences or, alternatively, maximizes the agreement with the voters’ preferences.

It can be observed from the definition that the Borda mean rule only depends
on the pairwise majority margins and hence on the weighted tournament induced
by a preference profile. Thus, the Borda mean rule is a C2 rule in Fishburn’s (1977)
classification. This property will play an important role in our characterization. An
interesting property of the Borda mean rule is that it always approves Condorcet
winners and always disapproves Condorcet losers, provided they exist. This can be
seen by recalling that if a is the Condorcet winner, then β (a)> 0 from the definition
of β , and similarly for Condorcet losers; alternatively one can note that the Kemeny
score of a dichotomy < strictly improves if we move the Condorcet winner from the
lower to the upper indifference class.

To help us understand the Borda mean rule, we discuss its behavior for the weighted
tournaments given in Figure 1. In the tournament T , all alternatives have Borda
score 0 (later we will say that T is purely cyclic), and so we have BM(T ) = D . The
tournament T ′ is purely cocyclic with Borda scores 3,0,−3 for x,y,z, respectively.
Hence BM(T ′) = {{x,y}< {z},{x}< {y,z}}. T ′′ has a cyclic part and a cocyclic part.
The Borda scores are 2,1,−3 for x,y,z, which implies that BM(T ′′) = {{x,y}< {z}}.

5 Axioms

One may think that SDFs are a well-studied object, since every SCF partitions the set
of alternatives into a set of winning alternatives and a set of losing alternatives and
hence induces an SDF. As discussed by Duddy et al. (2014), this way of constructing
SDFs seems to miss the point, since SCFs aim to select a set of “good” alternatives,
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(a) Cyclic tournament T

x y

z

2

(b) Cocyclic tournament T ′

x y

z
2

(c) Mixed tournament T ′′

Fig. 1: Examples for the Borda mean rule. The weight of an edge denotes the majority
margin between the two adjacent alternatives. Unlabelled edges have weight 1.

typically as small as possible, and not a set that maximizes separation with its com-
plement. Reversal symmetry formalizes this crucial difference: if all voters reverse
their preferences, then the approved set becomes the disapproved set and vice versa.
Formally, an SDF satisfies reversal symmetry if

f (
←−
P ) =

←−−
f (P) for all P ∈RN . (Reversal symmetry)

While the Borda mean rule satisfies reversal symmetry, we do not impose this
axiom for our characterization. Instead, we use the same four axioms that also feature
in Young and Levenglick’s (1978) characterization of Kemeny’s rule. First, we require
SDFs to satisfy neutrality: renaming the alternatives in a preference profile leads to
the same renaming in the output relations. Neutrality thus prescribes that an SDF is
symmetric with respect to the alternatives and prevents it from being biased towards
certain alternatives. Let Π(A) denote the set of all permutations on A. Then, an SDF f
satisfies neutrality if

f (σ(P)) = σ( f (P)) for all P ∈RN , N ∈F (N), and σ ∈Π(A). (Neutrality)

When dealing with variable electorates, it seems reasonable to require that if two
disjoint electorates agree on the same ranking, then this ranking should be returned
when they are combined into one electorate. This is known as reinforcement. An SDF
f satisfies reinforcement if

f (P)∩ f (P′) 6=∅ implies f (P)∩ f (P′) = f (P∪P′) for all P ∈RN and P′ ∈RN′

with N∩N′ =∅. (Reinforcement)

Notice that reinforcement is agnostic about the type of output. It may be defined in
the same way for every kind of aggregation function, such as social choice functions
(which return a subset of alternatives) or social preference functions (which return
a set of linear orders of the alternatives). Reinforcement was introduced by Young
(1974a, 1975) (he called it “consistency”) to characterize scoring rules; the axiom is
related to “separability” introduced by Smith (1973) (now often called consistency)
for social welfare functions.

Our axioms so far are completely oblivious of the meaning of preferences. Without
an axiom that prescribes some degree of correlation of the voters’ preferences with
the aggregated preferences, the trivial SDF always returning all dichotomies is not
ruled out. An arguably minimal axiom of this nature is faithfulness, which requires
that whenever the electorate consists of one voter with dichotomous preferences then
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his preferences should be uniquely returned. Formally, an SDF f satisfies faithfulness
if

f (P) = {<i} for all P ∈R{i} and i ∈ N with <i ∈D . (Faithfulness)

Lastly, we consider an axiom that specifies how to deal with “dummy” alternatives
that are independent from the others in the sense that they are tied with every other
alternative in a pairwise majority comparison. Formally, an alternative x∈A is a dummy
if nxy = nyx for all y∈A. The quasi-Condorcet property asserts that dummy alternatives
can be placed arbitrarily in the output ranking. To formalize this, let <|A\{x} be the
preference relation on A\{x} obtained by restricting < ∈R to alternatives in A\{x}.
Restriction of a preference profile is defined by restricting each voter’s preference
relation. If <̂ is a dichotomous preference relation on A \ {x}, then <̂〈x〉 = {< ∈
D(A) : <|A\{x} = <̂} is the set of dichotomous preference relations on A obtained by
adding x to <̂, once as approved and once as disapproved. For a set S of preference
relations on A\{x}, we define this operation by S〈x〉 =

⋃
<̂∈S <̂〈x〉. We say that an

SDF f satisfies the quasi-Condorcet property if

f (P) = f (P|A\{x})〈x〉 for all P ∈RN , N ∈F (N), and x ∈ A with nxy = nyx

for all y ∈ A. (Quasi-Condorcet property)

The quasi-Condorcet property is a strengthening of the cancellation axiom, which
requires that all dichotomies are returned whenever all majority margins are zero.
Formally, f satisfies cancellation if

f (P) = D for all P ∈RN , N ∈F (N) with nxy = nyx for all x,y ∈ A.
(Cancellation)

Within the class of scoring rules, the cancellation axiom (for SCFs) characterizes
Borda’s rule (Young, 1975).

6 The Linear Algebra of Weighted Tournaments

Let us define a few special weighted tournaments that will be useful later, see Figure 2
for drawings. Given three alternatives x,y,z ∈ A, we write Cxyz for the weighted
tournament with mxy =myz =mzx = 1 and myx =mzy =mxz =−1, and all non-specified
values 0. Thus, Cxyz is a 3-cycle. Next, given a set X ⊆ A of alternatives, we write DX
for the weighted tournament with

mab =


1 if a ∈ X ,b 6∈ X ,

−1 if a 6∈ X ,b ∈ X ,

0 otherwise.

Thus, DX is the weighted tournament induced by a profile containing a single di-
chotomous voter i with X �i A\X . Finally, for alternatives x,y ∈ A we will need the
weighted tournament Sx

y = D{x}+DA\{y} which consists of a single “top” alternative
x, a single “bottom” alternative y, and all other alternatives in between.

For our characterization, it will be useful to understand the structure of weighted
tournaments better, and so we give a brief introduction to their linear algebra. Let V be
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x y

z

(a) Cycle Cxyz

x1 x2 · · · xr

z1 z2 z3 · · · zq

(b) Tournament DX

x

z1 z2 · · · zq

y

2

(c) Tournament Sx
y

Fig. 2: Some types of tournaments.

the vector space of rational-valued skew-symmetric m×m matrices (and, equivalently,
of weighted tournaments). Note that dimV =

(m
2

)
. This vector space can be endowed

with the usual inner product, identifying a skew-symmetric matrix with a vector
in Qm(m−1)/2. We will be interested in an orthogonal decomposition of V into two
subspaces:

V =Vcycle⊕Vcocycle,

where Vcycle is the cycle space (of dimension
(m

2

)
− (m−1)) and Vcocycle is the cocycle

space (of dimension m−1). The cycle space Vcycle = 〈Cxyz : x,y,z ∈ A〉 is defined as
the span of all 3-cycles (equivalently, the span of all simple cycles). The cocycle space
Vcocycle = 〈DX : X ⊆ A〉 is defined as the span of all tournaments DX (equivalently, the
span of all D{x}). It can be checked that these two subspaces are orthogonal and jointly
span V .

Proposition 1 The subspaces Vcycle and Vcocycle are orthogonal and jointly span V ,
that is, V =Vcycle⊕Vcocycle.

With this decomposition, given a weighted tournament T , we can uniquely write
T = Tcycle +Tcocycle, where Tcycle ∈Vcycle is the cyclic component of T and Tcocycle ∈
Vcocycle is the cocyclic component of T . We say that T is purely cocyclic if T = Tcocycle,
i.e., if Tcycle = 0. Of the examples in Figure 2, Cxyz is purely cyclic, and DX and Sx

y
are purely cocyclic; in Figure 1, the tournament T ′′ has non-zero cyclic and cocyclic
components.

Let us next give a convenient characterization of purely cocyclic tournaments.

Lemma 1 (Zwicker, 2016) A weighted tournament T is purely cocyclic if and only
if it is difference generated, i.e., there exists a function γ : A→ R such that mab =
γ(a)−γ(b) for all a,b∈A. In fact, if T is purely cocyclic, then it is difference generated
by γ(a) := β (a)/m, i.e., by Borda scores, suitably rescaled.

Obviously, a difference generated tournament cannot contain a cycle. For example,
the tournament DX is difference generated with γ(x) = 1 for all x ∈ X and γ(z) = 0 for
all z 6∈ X . The tournament Sx

y is difference generated with γ(x) = 1, γ(y) =−1, and
γ(z) = 0 for z ∈ A\{x,y}.

Proof (of Lemma 1) If tournaments T1 and T2 are difference generated by γ1 and γ2
respectively, then it is easy to see that αT1 +βT2 is difference generated by αγ1 +
βγ2. As we noted above, the tournaments DX are difference generated. Hence all
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tournaments in the space Vcocycle, which is spanned by the tournaments DX , are
difference generated.

Suppose T is difference generated by γ , and consider the tournament Cxyz for some
x,y,z ∈ A. Then

T ·Cxyz = (γ(x)− γ(y))+(γ(y)− γ(z))+(γ(z)− γ(x)) = 0.

Hence T is orthogonal to every Cxyz, and thus it is orthogonal to every weighted
tournament spanned by 3-cycles. Hence T is orthogonal to Vcycle, and hence T =
Tcocycle, so that T is purely cocyclic. ut

7 Characterization

We are now ready to state and prove our main result.

Theorem 1 An SDF f satisfies neutrality, reinforcement, faithfulness, and the quasi-
Condorcet property if and only if f is the Borda mean rule.

The fact that the Borda mean rule satisfies all four axioms follows readily from
the definition. Hence we only prove the “only if” part of Theorem 1. Its proof is split
up into six statements.

Our first lemma is also part of Young’s (1974a) characterization of Borda’s rule. Its
conclusion does not depend on the type of output of f , and in particular also holds for
social choice functions and social preference functions (for the appropriate definition
of cancellation). We include the proof for completeness.

Lemma 2 (Young, 1974a) If an SDF f satisfies reinforcement and cancellation, then
f only depends on the majority margins.

Proof Suppose f satisfies reinforcement and cancellation, and let P1 and P2 be profiles
that induce the same majority margins. Assume first that P1 and P2 are defined on
disjoint electorates. Let Q =

←−
P1 , interpreted as having an electorate disjoint from those

of P1 and P2. Since P1∪Q and P2∪Q both induce the empty weighted tournament, by
cancellation, we have that f (P1∪Q) = D = f (P2∪Q). Hence, using reinforcement
twice,

f (P1) = f (P1)∩D = f (P1∪ (P2∪Q))

= f ((P1∪Q)∪P2) = D ∩ f (P2) = f (P2).

For profiles P1 and P2 whose electorates are not disjoint, find a profile P3 whose
electorate is disjoint from both P1 and P2, and so that P3 induces the same majority
margins as P1 and P2. Using the argument above twice, we have f (P1) = f (P3) =
f (P2). ut

Since the quasi-Condorcet property implies cancellation, this shows that f only
depends on the majority margins induced by a preference profile. Thus, f is a C2 rule
in the sense of Fishburn (1977). In particular, this implies that f is anonymous, i.e.,
the outcome is invariant under renaming the voters.
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Lemma 3 (Young, 1974a) If an SDF f satisfies reinforcement and cancellation, then
f can be uniquely extended to the domain V of all rational weighted tournaments, in a
way that preserves reinforcement, neutrality, faithfulness, and the quasi-Condorcet
property.

Proof For any T ∈V and natural number n ∈ N, define f ( 1
n T ) = f (T ). This is well-

defined since if 1
n T = 1

n′ T
′, then n′T = nT ′, and then by reinforcement and definition,

f ( 1
n T ) = f (T ) = f (n′T ) = f (nT ′) = f (T ′) = f ( 1

n′ T
′). ut

Lemma 3 enables us to change the domain of f from preference profiles to V , the
set of rational-valued skew-symmetric matrices (equivalently, weighted tournaments),
as f is invariant on the set of profiles that induce a given weighted tournament. As this
is more convenient to work with, we will view f as a function with domain V from
now on.

The next lemma and the resulting corollary show that the cyclic part of a weighted
tournament can be ignored when computing the outcome of f . Since the cocyclic
part is completely determined by the Borda scores (by Lemma 1), we see that f only
depends on the Borda scores. To achieve this result, we will show that f is trivial on
purely cyclic tournaments, in the sense of returning all dichotomies. As a first step,
we show this for the building blocks Cxyz of the cycle space, using an argument that
makes heavy use of neutrality.

Lemma 4 Suppose A = {a,b,c} consists of three alternatives. If f satisfies neutrality,
reinforcement, and cancellation, then f (Cabc) = D .

Proof Let C =Cabc and < ∈ f (C). Let σ = (a b c) and observe that C = σ(C). Thus,
by neutrality of f , we must have σ(<) ∈ f (C) and σ2(<) ∈ f (C). Hence, either

{a,b,c} ∈ f (C) or {a} � {b,c} ∈ f (C) or {b,c} � {a} ∈ f (C).

Now consider the permutation σ̂ of A that transposes b and c, i.e., σ̂ = (a)(b c). Then,
by neutrality, σ̂( f (C)) = f (σ̂(C)). Thus, in each of the three cases,

f (C)∩ f (σ̂(C)) = f (C)∩ σ̂( f (C)) 6=∅.

Hence, reinforcement and cancellation imply that

f (C)∩ f (σ̂(C)) = f (C∪ σ̂(C)) = D .

Hence, f (C) = D . ut

Next, we lift the result for the Cxyz to apply to all tournaments in Vcycle.

Corollary 1 If an SDF f satisfies neutrality, reinforcement, and the quasi-Condorcet
property, then f depends only on Borda scores.
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Proof Let T be any weighted tournament, and consider its orthogonal decomposition
T = Tcycle + Tcocycle. We will show that f (T ) = f (Tcocycle). Because Tcocycle only
depends on Borda scores (by Lemma 1), then so does f . Since the space of purely
cyclic tournaments is spanned by 3-cycles, we can write Tcycle = ∑x,y,z λxyzCxyz, where
we may assume λxyz ≥ 0 for all x,y,z ∈ A (since we can replace negative values by
observing that Cxyz =−Czyx). By Lemma 4 and the quasi-Condorcet property, we have
f (Cxyz) = D . Thus, by reinforcement, f (Tcycle) =

⋂
λxyz>0 f (Cxyz) = D . Thus, again

by reinforcement, f (T ) = f (Tcycle)∩ f (Tcocycle) = f (Tcocycle). ut

Remark 1 The conclusion of Corollary 1 can also be proven using the axioms of
neutrality, reinforcement, faithfulness (in addition), and cancellation (rather than quasi-
Condorcet), by adapting the proofs of Debord (1992, Section 3). ut

With the conclusion of Corollary 1 in place, the quasi-Condorcet property becomes
a much stronger axiom: while previously it only implied that dummy alternatives
(those that are majority-tied with every other alternatives) can be moved around freely,
now we see that this is the case for all alternatives with Borda score 0.

Next we observe that f is equivalent to the Borda mean rule for the purely cocyclic
tournaments Sx

y shown in Figure 2c. These tournaments have the useful property
that the Borda score of all but two alternatives is zero, and, as we will see in the
proof of Lemma 6, every purely cocyclic tournament can be decomposed into such
tournaments.

Lemma 5 If an SDF f satisfies neutrality, reinforcement, faithfulness, and the quasi-
Condorcet property, then f (Sx

y) = BM(Sx
y) for all x,y ∈ A.

Proof By Corollary 1, any such f depends only on Borda scores. The weighted
tournament Sx

y (see Section 6) is Borda-score equivalent to the weighted tournament
Ŝx

y given by
mxy = 2, myx =−2, and mab = 0 otherwise.

In Ŝx
y, all alternatives except x and y are dummies. By faithfulness, f (Ŝx

y|{x,y}) = {x�
y}. By the quasi-Condorcet property, f (Ŝx

y) = {< ∈D(A) : x� y}= BM(Sy
x). ut

By decomposing purely cocyclic tournaments into tournaments of form Sx
y, we can

pin down the output of f for all purely cocyclic tournaments.

Lemma 6 Let T be a purely cocyclic weighted tournament. If f satisfies neutrality,
reinforcement, and the quasi-Condorcet property, then f (T ) = BM(T ).

Proof By Lemma 1, T is difference generated by a function γ : A→ R. We prove the
statement by induction on the number of alternatives with non-zero Borda score. If
there are no such alternatives, then every alternative has Borda score 0, and so by the
quasi-Condorcet property, f (T ) = D = BM(T ).

Now assume that some alternative has non-zero Borda score, and so in particular
γ is not constant. Let x̄ ∈ argmaxx∈A γ(x) and

¯
x ∈ argminx∈A γ(x). We may assume

without loss of generality that ∑x∈A γ(x) = 0, since adding a constant function to γ

does not change the weighted tournament it generates. This implies that γ(x̄)> 0 and
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γ(
¯
x)< 0. Let δ = min{|γ(x̄)|, |γ(

¯
x)|}> 0. Let T ′ be the tournament that is difference

generated by γ ′ : A→ R with γ ′(x̄) = γ(x̄)−δ , γ ′(
¯
x) = γ(

¯
x)+δ , and γ ′(x) = γ(x) for

all x ∈ A \ {x̄,
¯
x}. Note that either x̄ or

¯
x now has Borda score 0 in T ′, so f (T ′) =

BM(T ′) by induction. Lemma 5 implies that f (Sx̄

¯
x) = BM(Sx̄

¯
x) = {< ∈ D : x̄ �

¯
x}.

Also, by the definition of the Borda mean rule, BM(T ′)∩BM(Sx̄

¯
x) 6=∅. From this and

T = T ′+δSx̄

¯
x it follows from reinforcement that

f (T ) = f (T ′)∩ f (Sx̄

¯
x) = BM(T ′)∩BM(Sx̄

¯
x) = BM(T ). ut

The outcome of f does not depend on the cyclic part of a weighted tournament
as proven in Corollary 1. Lemma 6 shows that f is equal to the Borda mean rule for
purely cocyclic tournaments. Together, these two statements imply that f is equal
to the Borda mean rule for all weighted tournaments. This completes the proof of
Theorem 1.

8 Independence of the Axioms

We show that all four axioms are indeed required for the characterization by giving an
SDF that satisfies all but one of the axioms for each of the four axioms.

– Neutrality: Fix two alternatives a,b ∈ A and define a skewed variant of the Borda
mean rule by first doubling the weight of the edge between a and b and then
calculating the outcome of the Borda mean rule.

– Reinforcement: Apply the sign-function to all majority margins (i.e., replace
positive numbers by +1 and replace negative numbers by −1) before calculating
the outcome of the Borda mean rule. This yields the Copeland mean rule that
approves all alternatives with above-average Copeland score and disapproves those
with below-average Copeland score.

– Faithfulness: Reverse the sign of all majority margins before calculating the
outcome of the Borda mean rule. This yields the reverse Borda mean rule.

– Quasi-Condorcet property: Whenever all alternatives have Borda score zero (the
weighted tournament is purely cyclic) then return all dichotomies. Otherwise,
return the Borda winners, in the sense of returning {D{x} : x is a Borda winner}.
By case analysis, one can check that this rule satisfies reinforcement. Notice that it
does not satisfy reversal symmetry.

The last example implies that, in our main result, we cannot weaken the quasi-
Condorcet property to cancellation.

9 Conclusions and Future Work

We have presented a characterization of the Borda mean rule as a social dichotomy
function, showing that it fills the same space as does Kemeny’s rule among social
preference functions. It would be interesting to see other SDFs proposed and discussed
in the literature; for now, the Borda mean rule seems like a very attractive example of
an SDF.
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Several questions remain for future work. Is there an alternative proof of our
characterization that does not need linear algebra, such as in the proof of Hansson
and Sahlquist (1976) for Borda’s rule and of Debord (1992) for the k-Borda rule?
(See Remark 1.) We can also ask whether the Borda mean rule can be characterized
using different axioms. It seems particularly desirable to replace the quasi-Condorcet
property with a more intuitive axiom. For example, does our result still hold if we were
to replace the quasi-Condorcet property with cancellation and reversal symmetry?
Or if we replace it with cancellation together with the requirement that Condorcet
winners are always approved and Condorcet losers are always disapproved? These
results are not ruled out by our examples in Section 8; to establish them, one would
only need to reprove the conclusion of Lemma 5.

The Borda mean rule is particularly natural if voters’ preferences are themselves
dichotomous; in this setting, the Borda mean rule is often called the mean rule (Duddy
et al., 2016). Our proof does not characterize the Borda mean rule if it is defined
only over dichotomous preference profiles, because the quasi-Condorcet property is
equivalent to cancellation on this domain. It would be interesting to have an axiomatic
characterization of the mean rule using reinforcement. An axiomatic characterization
using a different consistency notion is already known (Duddy et al., 2016).

We have noted that the Borda mean rule can also be seen as the 2-Kemeny rule. It
seems plausible that our axioms in fact also characterize the k-Kemeny rule for each
k ≥ 3. However, it seems that different techniques (closer to the ones employed by
Young and Levenglick (1978)) are necessary to show this.

Finally, is there a similar characterization of scoring mean rules based on other
scoring rules, in the style of Young (1975)?
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