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We analyzeif and whensymmetric Bayes Nash equilibrium predictions can explain human
bidding behavior in mulobject auctions. We focus on two sealed splitaward auctions with
ex-ante split decisions as they can be regularly found in procurement practice. These auction
formats are tsaightforward multiobject extensions of the firgrice sealedbid auction. We
derive the riskneutralsymmetricBayes Nash equilibrium strategies and find that, although the
two auction mechanisms yield the same expected costs to the buyer, othes abpleettwo
models, including the equilibrium bidding strategies, differ significantly. The strategic
considerations in these auction formats are more involved than in-Bhjist-price sealeid
auctions, and it is questionable whether expectdityutiaximization can explain human bidding
behavior in such mukbbject auctions. Therefore, we analyzed the predictive accuracy of our
equilibrium strategies in the lam human subject experiments we found underbidding, which is

in line with earlier &periments orsinglelot first-price sealeid auctions. In order to control for
regretwe organizeexperiments againsomputerized bidders, who plélye equilibrium strategy.

In computerized experiments where bid functi@meonly used in a single auoh, we found
significant underbidding on lowost drawsln experiments where the bid functiereused in

100 auctions we couldalso control effectively for risk aversion, and thens no significant
difference of the average bidding behavior atite isk-neutral Bayes Nash equilibrium bid
function. The results suggest that strategic complexity does not serve as an explanation for
underbiddingin splitaward procurement auctignbut risk aversion does have a significant
impact.
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1. Introduction

A growing number of papers over recent years have focused on the design of auctions for
multiple nonidentical objects. The simultaneous mutiund auction, for example, and, raor
recently, combinatorial auction designs have been used for selling spectrum licenses worldwide
(Cramton 2018 Similar auction design problems regularly arise in industrial procurement and
logistics where multiple heterogeneous goods or services need to be pur(Gesaton,
Shoham et al. 2006

In this paper, we focus asplit-award auctionsa simple but widespread type of multi
object auction often used for mu#iourcing, which is a typical requirement in procurement
negotations. Companies such as Sun and HP, for example, procure products worth hundreds of
millions of dollars using different types of multiple sourcing auctigEsmaghraby 2000Tunca
and Wu 200% These firms usually want to have more than one supplier for risk considerations.
In global business often a new supplier with cheaper but possibly unreliable technology enters the
marketplace to wirorders from firms by beating the price of their reliable but more expensive
competitordGurnani, Gumus et al. 20LZSplitaward auctions can be used to make sure the new
entrant does not win the entire quantigd the second souraeith the required production
facilities is availablen case the new entrant defaults

We focus on equilibrium bidding strategies two forms of sealetbid auction formats
that we frequently encounter in procurement practice for dual sourcing. The lots in such auctions
could be the 30% and the 70% share of the demand for a particular raw material, and the buyers
choose the spliéx-arnte and restrict the suppliers to submitting either one single bid or two bids
on the two lots. More specifically, we analyze two fpsice sealesbid procurement auctions for
auctioning the two lots of a product with different sizes at one go. Thadticsion model is the
so-called Yankee auctignin which each bidder just submits one bid for the unit price of the
product for which they bid. Then, the bidder with the lowest bid wins the large lot and the bidder
with the second lowest bid wins the smiall. The second splaward sealedid auction we
study is an extension called tparallel auction in which each bidder submits one bid for the
unit price of the product for each lot and the bidder with the lowest bid on each lot wins that lot.
Each bide@r can win at most one lot. Such auction formats witrexaante split are easy to
implement for procurement managers, and it is important for them to understand the bidding

strategies in such auctions.



Corey (1978, Woodside and Vyas (1987and Seshadri, Chatterjee et al. (1991ave
already discussed such sgitvard contracts with préefined splits in a variety of industries, and
such auctions are common irseurcng nowadays. Interestingly, we aneitheraware of a
gametheoretical analysis nor of experimental work on these auction formats. Note that the
auction formats analyzed in this paper are different from the-aphatd auctions analyzed in
Anton and Yao (289, 1992) and Anton et al. (2010), where suppliers submit bids on each
possible split of a contract and the entire quantity and the split choice is endogenous. Our paper is
also different from Perry and Sakovics (2003), who study a setting in whichyeedmmmits to
a splitex-ante but the items are then sold in a sequential sepocd auctionRecently,Gong,

Li et al. (2012 assume a singlkid seconeprice splitaward auction with aax-antesplit similar

to the Yankee auction in our paper, but their model focuses on incentives of suppliers to invest.
We contribute thetheoretical analysis and Bay®#ash characterization of these sjltad
auctions with a predefined split, which is different from the one with endogenous determination
of market structure, and analyze to which extent such models have predictive power in lab
experiments.

Bayes Nastequilibrium analysis is the standard apptoas model sealelid auctions
and a lot of recent research has tried to extend this type of analysis teolopedti auctions
(Krishna 2009. The riskneutral BayesNash equilibrium (RNBNE) of muHkobject auctions is
technically much more challenging than that of sidgteauctions andasof yet, there are only a
small number of papers deriving RNBNE strategies for specific combinatorial or non
combinatorial nlti-object auction format@Goeree and Lien 200@usubel and Baranov 2010
Sano 201 Actually, so far there is nBayes Nastequilibrium characterization for firgirice
sealeebid combinatorial auctionsSome very recemesearchuses numerical methods to derive
equilibrium predictionswhich also shows the difficulties of Bayesian models for rabject
markets Given the stategic complexity of these mulbbject auctions, it isotclear that RNBNE
predictions explain human behav-idimensionakdnly . The
concerning the level of bighading for firsfprice sealesbid auctions of a single objedidders
in multi-object firstprice sealetbid auctions also need to decide which objects they want to bid
on and how much they want to shade their bids in each of théldtshading is defined by the
differencebetweenthe bid and th@roduction cots for a lot In parallel splitaward auctions, for

example, not only the number of bidders and the prior distribution, but also the split parameter



determines the level of bid shading. In the Yankee auction, the bidders also need to take into
account theisk of winning the small lot rather than the large lot with a certain bid price.

The predictive accuracy of RNBNE predictions for muolject auctions in the lab is
largely unexplored. However, there is growing literature on-firete sealedid auctons of
single objects which shows that bidding behavior in the lab deviates substantially from the
RNBNE prediction and overbidding is a common phenomenon in salesons.In our
procurement auction context this meamslerbiddingbelow the RNBNE equilibum prediction,
and we willrefer tounderbidding and the underbidding phenomenon throughdasswe want
to distinguish between the results of sales and procurement auctions in.thaddirstprice
auction controversy and the discussions albmalebidding already played oun a controversy
among experimental economists in tecember 1992 issud the American Economic Review
It raised the question, how to establish sufficient experimental control in order to establish
empirical regularities irthe laboratory, and how to modify theory in light of countervailing
empirical evidence. Ever sincenderbiddinghas been source of substantial research in the
experimental auction literatufgee Section 3.1Risk aversion, regreind uncertainty abouhé
rationality of others have served as explanationsufaterbidding(EngelbrechiWiggans and
Katok 2009. A number of authors have challenged the overall approach of models based on
rational choice and expected utility maximizat{@ourdieu 2005Nell 2007).

Even if biddersareable to mimic their RNBNE strategy in a sindfé auction, it is far
from obvious that RNBNE models would still be a good predictor for robiftect auctions. In
singlelot auctiors, bidders might estimate the right level of bid shading. As described above,
split-award auctions are strategically more complex, and it is interesting to understand if bidders
are able tomaster the strategic complexity amamic their RNBNE strategyat least in a
controlled environmentf this is the case, the model can serve as a baseline starting point from
which one can add other known phenomena such as risk aversion or regret. Howteer, i
RNBNE strategy does not explain bidding behawwen ina controlled environmenthere is
little hope thatsuch modelswould explain bidding behavior in more complex muolhject
auctions such as combinatorial auctioms.summary we try to understand, in spite of the
increased strategic complexity of sgdward auctionspidders are able to bid according to the

RNBNE bid functioim a controlled experimenOur contribution is twdold:



Firstly, we derive closefbrm increasingBayes Nastbidding strategies for the Yankee
and the parallel auctian thesymmetric independent private values maated also compare and
contrast the total cost implications. This Bayes Nash characterization has been frossitig
growing literature of multbbject auctions and is particularly relevant for procuremint
interesting that until now theiie no closedorm expressiorof Bayes Nash equilibrium bidding
strategiesfor first-price @mbinatorial auctionsWe find that, although the parallel and the
Yankee auction mechanisms yield the same expected costs toytre dther aspects of the two
model s, including the equilibrium biddi,ng str
differ significantly. Most of the previous studies in this afdaton and Yao 1992Armstrong
2000 focus on the comparison of auction mechanisms in terms of the expected revenue, while
here, we also compare the different mechanisms in terms of other measures, such as the
equilibrium b ddi ng strategies and winning bi dder so
considerations in reatorld procurement practice.

Secondly, we report on lab experiments with sphfard procurement auctions testing
RNBNE predictions. We designed lab experitsenith different levels of control where human
bidders compete either against other human bidders or against computerized Diusldaster
are designed to mitigate the impact of behavioral influences, such as risk aversion, regret and
inconsistent expeations.In experiments withhuman subjects, bidders compete repeated
auctions. These experiments are modeled after procurement auctions as they can be found in the
field. We observe underbidding for leeost drawssimilar to earlier experiments on gle-lot
first-price sealedid auctions Although the impact of risk aversion should be reduced with many
repeated auctions, residual risk aversion, wrong expectations about other bidders or regret can all
serve as explanations for this underbiddingerestingly, wedo rot find significant underbidding
in our computerized experiments, where bidders submit bids only once, but thearbrdssed
in 100 computerized auctions. Theseno significant difference between the average empirical
bid functions ad the RNBNE bid function in the singlet and in both spliaward auctions
when subjects played against computerized biddénss provides evidence that strategic
complexity or wrong expectations cannot serve as an explanation for underbidding.
Computeized experiments where the bid function of a bidder is only used once and not in 100
auctions exhibit significant underbidding, which indicates that risk aversion has considerable
impact on the bidding strategieAndreoni, Che et al. (2004vr i t e t hat Aone el «



theory that cannot be replicated in an experiment is the riskahguwof bidders, for the risk
attitudes of the subjects cannot be controlll
functionis reused in @0 auctions effectively achievhis goal.

The results provide evidence thmtlders in the lab behave as expected utility maximizers
in our auctions and they are able to mimic the complicated equilibrium strategies with
surprisingly high precision in the computerized experiments, if we control for regret and risk
aversion. In othewords, the RNBNE model describes the basic strategic considerations of
bidders in the lab well in the parallel but also in the more complex Yamla®n andthatthis
is independent of the split paramet®¥e also showthat risk aversiorleads to sigificant
underbidding, once we do not control for risk aversionthe field wrong expectations about
others,risk aversiorandregretcan all influence bidder behaviorhe level of underbidding will
depend on the frequency of such auctions and biddesyidcrasies. Stillwe argue that bidders
in splitaward auctions are able to understand the strategic situation arnldetfX\BNE model
can serve as a useful baseline mddepractitionersand future research

The paper is organized as follows. The teampeting procurement auction models are
introduced in Section 2, where we also discuss equilibrium bidding strategies and their
implications. In Section 3, the experimental design is introduced and the results are presented in
Section 4. Finally, Sectiob concludes with a discussion on further extensions of the models.

Technical proofs and the experimental instructions are included in the Appendices.

2. Theoretical Models

2.1 The Auctions

A buyer is to procure a given volume of a product using an audfiar exogenous reasons, the

buyer divides the total required volume, normalized to be 1 unit, into two lots)witkts in lot 1

and1- g units in lot 2. We further assume thgt> 0.5, and hence, lot 1 is the large lot. There

are N risk-neutral bidders competing for the two lots. Biddérs pri vate constar

production costo is identically and independently distributed according to the distribusigp

with support[c, E] and densityf (. In addition to the peunit marginal production cos, each

suppliermust also incur a fixed costto complete the production. Finally, we asgthat there

IS No reserverice.



2.1.1 The Parallel Auction

The rules of the parallel auction are as follows: After observing his privatengeconstant
marginal production cost for the producteach bidder submits two bids, and b*, as the per

unit price for each lot of the products. The lots are awarded to the lowest bid on each lot and the
winning bidder gets the contract with the payment that he bids. If one bidder hawdle bids

on both lots, he will be awarded only the large lot.

We will denote the expected payoffaogenerididder whose private pemit production
cost isc and whose bids are and b,byp(ly,b,, €) . Then

p(b, b, ©) = Pr(bidderi wins both Lotsgh -9 q K g
+Pr(bidderi wins Lot 1 and loses Lot &b, <)q K g (1)
+Pr(bidderi loses Lot 1 and wins Lot &b, <) 1 (g) K

The three terms in equation (1) reflect the three possible outcomes of the auction game
other than losing. The first possibility is that a bidder submits the lowesirbehch lot, and
hence, could win both lots. However, according the auction rule, he is only awarded the large lot,
that is, lot 1. The second possibility is that he only wins the large lot 1, and the last term is the
case where he only wins the small Bt Conditional on the bbther
chooses the bidding strategies by maximizing the expected payoff (1).

2.1.2 The Yankee auction

The Yankee auction works as follows: After observing his privateupgrconstant marginal
productioncost for the productg, each bidder submits only one bidy as the peunit price for

both lots of the products. The large lot is then awarded to the bidder with the lowest bid and the
small lot is awarde to the bidder with the second lowest bid. The winning bidders are again

compensated according to the bids they make. In this auction model, the expected payoff for

generic biddewhose private peanit production cost is and whose bid ib is



p(b,c) = Pr(bidderi wins Lot Db -c)q K g

2
+Pr(bidderi loses Lot 1 and wins Lot &b <) 1 (g) K @)

Since in this auction, bidders only submit one bid, thereoalgtwo possible outcomes
other than losing. The first case is that biddeubmits the lowest bid, and hence, wins the large
lot. The other possibility is that his bid is the second lowest and he is awarded the small lot.
Conditional ontheot her bi dd e r si@ghodseshha biddiogrstratefies dydnaximizing
the expead payoff (2).

2.2 Characteristics of the Equilibria
We will discuss th@&ayes Naslequilibrium strategies in what follows. All proofs can be found

in Appendix 1.

2.2.1 The Parallel Auction

We restrict our attention to symmetrigayes Nashequilibrium strategies in which bids are

continuous, strictly increasing and, almost everywhere, differentiable functions of costs. Let

(b(c), AG)) denote the equilibrium pair of bidding strategies for the two lots.

Proposition 1 In the parallel sealedbid first-price procurement auction model with two lots and

N >2 risk-neutral bidders, th@iniquesymmetricBayes Naslequilibrium bidding strategies are

given by
K 1 sal- F(x) 6’ ) ,
b(c)=c +- c{l F(C)]rgaei F(Q o{dﬂ Ry Q@ +9( N[ R-X K 9IF d
N ¢al- F(x) o
b,(c)=c ﬁael F(c) 6

with the boundargonditions 1),(c) = ¢ 4% and 2) b,(c)=c 41%.

Furthermore, £,(c)q> A0 -Qand b,(c)> HC) if the entry cost K is greater than a

(1- q) &1 -F(x) o e[Nq (N D[R FQ] @

thresholdK,where K, := 29- 1)|gael Fe) [1 F)

gx.
u



Proposition 1 calls for a few comments. Firstly, the equilibrium bidding function for the small lot

is the same as the bidding strategy in a standard seialénlst-price auction withN - 1 bidders
competing for the small lot. Secdydthe bidders bid less aggressively than the equilibrium bid
they submit in a standard sealeid first-price auction withN bidders competing for the large

lot, because they can still win the small lot. This means that bidders need to take into account the
possibility of losing the large lot and winning the small lot when they submit bids for the large
lot. The strategy is siifar to a sequential auction where the large lot is sold Additionally, ex

post, the winning bidders make positive profits no matter which lot they heiorun (2006)

shows that vth standard assumptions on the type distributguch arequilibriumis unique and

it is characterized as the solution to the system of differential equations corresponding tc the first

order conditions.

Proposition 2 In the parallel sealedbid first-price procurement auction model with two lots
and N risk-neutral bidders,

(i) As the number of bidders increases, bidding becomes more aggressive for both lots:

—”bl(c) <0 and—“g(c) <0

(if) As gincreases, bidding becomes more (less) aggressive for the large lotsing@hdot 2):

BE(©) _ o ang P49 g
M S}

2.2.2 The Yankee Auction

As above, we restrict our attention to strictly increasing differentiable symnzigsies Nash
equilibrium strategies. At suabquilibrium, bidderi chooses his bid) = 5(G) by maximizing his
expected payoff.

Proposition 3: In the Yankee sealdud first-price procurement auction model with two lots and
N >2 risk-neutral bidders, theuniquesymmetricBayesan Nashequilibrium bidding strategies
are given by

. +~°{[1- Fo g AN HFX[L Rx)" @ q}ob
(- FE" a «N BFE[L Re" @ o
{1+ (N -2)F(c)}
[1- F©)]a N BF(OI o

+K{



with the boundary conditionb(é) =c 4-1L .
-q

Corollary 1: In the Yankee sealdud first-price procurement auction model, ex post,
(i) thewinner of the large lot always makes a positive profit; and
(i) the profit for the winner of the small lot can be either positive or negative.

Corollary 1 reveals an important difference between the two models. In the parallel
auction mechanism, bieds bid in such a way that, ex post, they always make positive profits no
matter which lot is awarded. By contrast, in the Yankee mechanism, ex post, the bidder who wins

the small lot will earn either a positive or negative profit depending on his ppvadiiction
costs.

Proposition 4: In the Yankee sealdud first-price procurement auction model with two lots and
N risk-neutral bidders,

(i) AsN increases, bidding becomes more (less) aggressive if the fixeK cizssgreater than
(smaller than) a threshol; :
%m( Q) ifK €)K(N,c,F)
where
r”j{A+ B +D} dx
[1- FE]" F(o)(2a -1
A=[F(9 -FOI[1 FX]"[1 RO d
B=[F(9 -FMJ[L F(X]"* FOYRQQ o
D=[F(c) -FM][NF(9 2(N RO NRy [+ R} 4 ¢

K,(N,c, F)=

(i) As gincreases, bidding becomes more (less) aggressive if the fixeK cissgreater than

(smaller than) a threshol,:

“ﬁ;c) >0( 0) ifK &)k (N,c,F)
where
aa N; 2
(N6 Fy=—— T B 8 IR -Fald

1+(N -2)F(©) NF(6) tM& R0 &
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Comparative statics analysis of the equilibrium bidding strategy for the Yankee model is more
involved. Partial derivatives are not of uniform sign throughout the parameter space, but regions
where the partial effects are positive and negative can bectérézad in terms of thresholds on

the magnitude of the fixed cast

2.3 Procurement Cost Comparisons

Having derived the symmetric equilibrium bidding strategies in both the parallel and the Yankee
auctions, we can now compare the implications of therh@ohanisms on expected cost to the
buyer. The proof for Proposition 5 can be found in Appendix 1 and it also follows from
EngelbrechiWiggans (198BandKrishna (2009, p206)

Proposition 5: Suppose that the private production costs are independently and identically
distributed and all bidders are riskeutral. Then the sealduld first-price parallel procurement
auction and the sealeoid first-price Yankee procurement auction yield the saxpected cost
to the buyer.

The equivalence result is a usefuiece of information for business decisiemakers,
becausan theorythey can now look into other dimension of the differences between the two
formats and recommend which format to adopt &cpce without worrying about the expected

costs by using different auctions.

3. Experimental Setup

Predicting strategies of bidders in seated auctions turned out to be a challenge, as factors such

as the uncertainty a bidderd, risk dversig@nd aegrét oan alllplaytay 6 o f
role. In fact, the literature on singlet first-price sealeeid auctions shows a consistent and
significant level ofunderbiddingcompared to th&ayes Naslequilibrium prediction(Roth and

Kagel 199%. We will firstly summarize lessons learned from the researchnolerbiddingin

singlelot first-price sealeid auctions before we introduce our experimental design.

3.1 TheUnderbidding Puzzle in Sealeebid Auctions
A number of authors have usadk aversionto explain bids above the RNBNEox, Smith et
al. 1988 Chen and Plott 199&irchkamp and Reiss 2008ndreoni, Che et al. 200.7However,
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measuring the risk aversion of lab subjects turned out to be a challesmge and James (2000
compare estimates of risk preferences from-prate sealeid auctions to the Beck&eGroot
Marshak (BDM) procedure for comparably risky choices. Aggregate measures of risk preferences
under the two procedures showed that biddenerisk aversan the firstprice auction but risk
neutral, or moderately risloving, under the BDM procedure. Overall, risk attitudes not only
differed across assessment methods, but also varied within the same methd®ayseq
Laughhunn et al. 198MacCrimmon and Wehrung 1998choemaker 199Xrahnen, Rieck et

al. 1997. Paired lottery choices, as introduced Wglt and Laury (2005 have become more
popuar recently, but risk aversion is still recognized as a complex and context specific
phenomenonwhich is difficult to measuré®ohmen, Falk et al. 2005

EngelbrechWiggans (198®introduced posauctionregretas another explanation for the
bidding behavior inifst-price sealedid auctionsEngelbrechiWiggans and Katok (200%ound
support for the regret model in experiments with information feedlahckit the highest or
seconehighest bidafter the auctionFiliz-Ozbay and Ozbay (20D@lso found support for regret.
Deviations from the RNBNE bid function could also be duetong expectationsf the bidders
about the bids of other$Stahl and Wilson 1995 Goeree, Holt et al. (2002lemonstrate that
misperceived probabilities of imning the auction would explainnderbiddingas well as risk
aversion.

Problems in computing a best response are yet another conjecture why bidders might not
be able to follow the RNBNE strategy. The mathematical derivation of the RNBNE of split
award autions in Section 2 isnorecomplexthan in singldot auctionsand it is far from obvious
that human bidders in the lab would be able to mimic these derivations. Actually, there are
contradictory claims as to whether people reason according to Bayeseaena#(Gigerenzer
and Hoffrage 1996 We will refer to the problem of deriving the RNBNE bid function based on
given prior distributions about va#tions as thetrategic complexitpf the auction.

The literature omunderbiddings extensivand beyond what we can discuss in this section.
Some authors mention spite and joy of winning as potential reasons for deviations from
equilibrium predictions in secondprice auctions(Cooper and Fang 20p8However, risk
aversion, regret, wrong expectations, and strategmplexity are the most naturebnjectures

for deviations in our experiments
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3.2 Experimental Designand Hypotheses

In our experiments, we waad to tesbur theoretical resultand usedour designs which mirror

the decision situation in spi#tward auctions with different levels obntrol for the conjectures
discussed in the previous section. We organized computerized experiments where subjects
competed against computer agents to test hypotheses for underbidding, and human subject
experiments t@analyzeenvironments which mirror adworld environments.

In all treatments, we used tlstrategy methodn a way similar toSelten and Buchta
(1999, Guith, Ivanovdtenzel et al. (2003 and Kirchkamp and Reiss (2011The strategy
method elicits bid functions rather than bids for individual cost draws and it allows us to observe
biddingfunctions in much more detail. Other experimentKbghkamp and Reiss (20p8how
that bidding behavior that is observed with the strategy method is very similar to the behavior
observed with alternative methods. In contrast to this earlier work, in our computerized
experiments, weause a bid function 100 times in auctions against computer bidders to eliminate
risk aversion. We will see that this procedigeery effective. Let us briefly motivate the three
groups of treatment combinations in our experiments.

The first group of treatment combinations (i modeled after reaborld procurement
practices. These experiments model an environment Vilnerbidders compete in the same type
of auction against a pool of unknown bidders, but the competitors change overaimbideers
received cost draws and competed against each other. Bidders submitted bids in 16 subsequent
auctions and thewre re-matched randomly after each auction. These experiments allow for
learning about the auction format, and the 16 repetitionigatet risk aversion to some extent,
which can be motivated by reaforld tenders. After each auction, bidders had a possibility to
revise their bid functions and new variable ca@stsdrawn for each bidder independently. After
each auction, the bids oflalompetitors are revealed, as is typically the case, for example, in
construction or in public sector auctions. This is often done to combat collusion or bribery
(Thomas 199% In contrast to the computerized experiments, whigdesigned to understand
the potential impact of risk aversion or wrong expectations on underbidding, the results of the
treatment combination H should have external validity as they are close 4waedlpractices.

Our main hypothesis for this set of baseline treatment combinations is therefore:

13



Hypothesis 1 Bidders in human subject experiments will underbid below the RNBNE bid
function

As we found underbidding in line with earlier experiments on sil@l@uctions, we
introduced additional treatments ¢ontrol for different conjectures why bidders underi
secondgroup of treatment combinatiorf€1) had human subjects compete against computerized
agents, which played their RNBNE strategy. Biddamstold that their opponentare rational
computer agents, who maximized their expected paBadtiers didnot learn about other bids in
the auctionjust whether they won or lost an auction, which should minimize the impact of regret
as it was shown iEngelbrechiWiggans and Katok (20090f course risk aversiorand wrong

expectationganstill beadriver for deviations from the RNBNE.

Hypothesis 2:Bidding against computerized agents without informatibaut the bids of others
after the auctioreliminates underbidding.

Thethird group of treatment combinations (C108)dentical to Clbut the bid éinction
of a user is reused D0auctiors, which should mitigate risk aversidfor each new auction, we
drew a cost value randomly and determined the bid based on the bid function of a bidder to
participate in an auction against computerized bidders. The sighiren paid the average of his
winnings in the 100 auction$he impactof regret should also be minimal, because bidders did
not learn about the outcome of individual auctions or the bids of offteesdifference between

C100 and C1 provides an estimate for the impacs&faversion in these auctions.

Hypothesis 3:Bidding against computerized agents without information about the bids of others,
where bid functions are reused in 100 auctjaisninates uderbidding.

The fourth group of treatment combinations (C100d3es the same experimental design
as C100,but we also provide explicit information about the RNBMN&nction of the
computerized agentSince the bidders are ak-antesymmetric, the information in C100+ tells
the subjects implicitly what their equilibrium bidding function would be. Biddersildhjust
replicate the RNBNE strategy of oth@nsorder to determine their best respartéere we control
for wrong expectations about the computerized bidders, which might be different from wrong
expectations that bidders have in human subject expesmtili, it is valuable to understand
which impact explicit information about the bidding strategies of others has on bidders compared

14



to a treatment where this information is not available in C¥0®.consider deviations from the
RNBNE in C100+ as groundnoise or irrationality, which provides a baseline for other
experimentsStill, bidders might not understand that their best response is to mirror the RNBNE
in this treatment and strategic complexity can still be a reason for deviations. However, w

canna expect subjects in experiments with less control to be closer to the RNBNE prediction.

Hypothesis 4:Bidding against computerized agents without information about the bids of others,
where bid functions are reused in 100 auctions, and bidders seedtitibragqm bid functions of
their computerized opponentdiminates underbidding.

Table 1 provides an overview of how we control for different hypotheses for deviations
from the RNBNE in the four different treatment combinaticks discussed earligin treatment
C100+strategiccomplexity can still be an explanation foossibledeviations from the RNBNE.
Bidders in C100 only get the prior cost distributions, #mereforewrong expectations and
strategic complexity can both explain deviations. The differdreteeen C100 an@1 is only
the number of times in which the bid function is reused. Theretbig,differencecan be
explained by risk aversidio a large extent. Regret should have little impact, because bidders did
not learn about the bids of others in an auctibreatmeét combination H allows for all
explanations, although the 16 repetitions should mitigate risk aversion to some extent.

H C1 C100 | C100+
Strategic complexity + + + +
Wrong expectations + + + -
Risk aversion + + - -
Regret + - - -

Tablel: Control for reasons of deviations from the RNBNE in different treatment combinations. The + sign

indicates a possible reason for deviation, whiledicates that this reason is unlikely in this treatment.

The individual treatmencombinations are described Trable 2. Overall, 209 subjects
were involved in the experiments. In all treatment combinations, variable costs pes, unére
i.i.d. random variables drawn from a uniform distribution with a support of [0, 10.0]. The fixed
costK is 1 for all bidders. The split parameter in the experiments reported in the following with
treatment combinations H, C100, and C1@g = 0.7.
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Treatment | Bid fct. | Opponents | Information Split | Auction No. of
reused format Subjects
H.S 1 Human Prior distribution, 1.0 Single object | 16
bids of past auctions
H.P 1 Human Prior distribution, 0.7 Parallel 16
bids of past auctions
H.Y 1 Human Prior distribution, 0.7 Yankee 16
bids of past auctions
C1l.s 1 Computer | Prior distribution 1.0 Single object | 12
Cl.P 1 Computer | Prior distribution 0.7 Parallel 12
ClLyY 1 Computer | Prior distribution 0.7 Yankee 11
C100.s 100 Computer | Priordistribution 1.0 Single object | 11
C100.P 100 Computer | Prior distribution 0.7 Parallel 13
C100.Y 100 Computer | Prior distribution 0.7 Yankee 13
C100+.S 100 Computer | Prior & RNBNE bid fct. | 1.0 Single object | 10
C100+.P 100 Computer | Prior & RNBNE bid fct. | 0.7 Parallel 11
C100+.Y 100 Computer | Prior & RNBNE bid fct. | 0.7 Yankee 11

Table2: Overview of treatment combinations in the experiments describing the number of auctions in which a bid
function is used, the types of biddagainst which a subject competed (human or computer bidder), the information
available to bidders before an auction, the auction format (parallel or Yankee auction), and the number of bidders

involved in auctions with this treatment combination.

We also ran additional computerized experiments of C100+ and C100 with a split
parameter of) = 0.9 to make sure that the high predictive accuracy of the RNBNE function that
we found for the split off = 0.7 is robust against changes of the split paraméhes could be
confirmed. We provide the results of the spligof 0.9 only in Appendix 4, in order to limit the
number of treatment combinations in the main part of the paper.

In addition, we performed experiments with sinfgieauctions ¢ = 1) to urderstand how
the results compare with traditional reverse auctions. i$imscessary, because we are not aware
of similar experiments with a reverse figice sealetid auction. Overbidding on higbost
draws in sales auctions might just be differentrf underbidding for lowcost draws in reverse

auctions and these experiments provide us with a baseline
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3.3 Experimental Procedures

All experiments were conducted from November 2011 to November 2013 with students in
computer science, mathematics, pbys and mechanical engineering. The subjects were
recruited via email lists and experiments were conducted in a computer lab at our university. At
the beginning of the experiment, participants were randomly assigned to seats in the laboratory.
The partigpants obtained written instructions. These instructions varied slightly depending on the
treatment (see Appendix 2). All the instructions were read aloud and participants had to
participate in a test about the economic emwment and the auction rules1 addition, we
conducted a test auction to make sure that the subjects were familiar with the auction design and
the user interface. Bidders could take as much time as they wanted to write down their bid
functions. The average auction duration for all sghid formats was around 10 minutes. The
repeated auctions in H took less time, as bidders usually finished their updatel&ftenrtutes.

The experiments C1, C108nd C100+ took 45 minutes overall on average, while experiment H
took 2 hours and 30 mires on average.

Each participant received a show up fee of 10 Euro for H, which took more time, and 5
Euro for the computerized experiments. Losses could reduce the fee. Payoffs from auctions were
translated from Franc, the experimental currency, int@ Earough a fixed exchange rate. If
participants had colluded, they would have been excluded from the experiment without any
payment. However, we did not find evidence of collusion. If subjects had made a loss, which was
not covered by the show up and theyoff of all auctions, they would also have been excluded
from the experiment and the session would have been cancelled. Actually, there were no losses
which were not covered by the show up fee. Subjects only participated once in one session.
Overall, 103students participated in the experiments with spliard auctions where the split
wasq = 0.7, and 57 stuadés in experiments with a spfarameter ofj = 0.9 (see Appendix 4).

An additional 49 students participated in the experiments with siogfeverse auctions.

From the 103 students participating in sphktard auctionsq = 0.7), 22 were in C100+
(average payoff 13.38 u0u), 26 in C100 (average
and 32 in H (aver age p agntsfinfsingldét reveése augtions, E o m t
participated in C100+ (average payoff 13.15
(average payoff 7.25 a4), and 16 in H (average
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4. Experimental Results

We will now describe bidder behaviin the lab. We want to test the theoretical predictions and
understand how well the RNBNE bid function explains the empirical observations in the different

tfreatments.

4.1 Singlelot Procurement Auction

Before we look at spliaward auctions, we analyze singé procurement auctions in which the
entire quantity goes to one supplier. This will provide us with a baseline against which we can
compare bidding behavior in spétvard procurement auction¥Ve will discuss the far
hypotheses from the previous sectiand organize thenin three resultsbecausewe can

aggregate C100 and C1Q0Fhen weprovide statistics supporting the results.

Results on singlelot procurement auctions

S1: Thereis underbiddiry in treatment Hbut the level of underbidding decreased after a few
rounds.We fail to rejecHypothesis 1

S2: The RNBNE strateggescribesthe empirical data in C100 and C100+ in the sinfye
auction well. This suggests that wrong expectations and the strategic complexity have little
impact on the bidding behavidVe fail to rejecHypothesis 3 and.4

S3: We found underbidding on leaostdrawsin C1 and reject Hypothesis 2. The difference to

C100 indicateshat risk aversion has substantial impact on bidder behavior.

Support: In order to analyze the empirical bid functions, we analyze the outcome of linear
regression models in the different treatments and compare it with the linear RNBNE bid
functions for the small and the large totVe use a fixed effects model with a dumxyiable
0 to estimatehe unobserved heterogeneity of bidders
w | T i 10 6 -
The dependent variabie describes the bitisubmitted by bidder. The unit costsy are

used as the main independent vagafilhe coefficient® for the bidder ID of all the bidders

! Seemingly unrelated regression (SUR) is one possibility to deal with these two sources of data. However,
because each equation contains exactly the same set of regressors, the estimators of a SUR are numerically
identical to ordinary least squares estimstavhich follows from Kruskal's theorem (Davidson and

MacKinnon, 1993)
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control for bidder idiosyncrasies, but they are omitted from the table in order to focus on the main
variables. Variablé controls the number of the aucti¢or round)and is only used inepeated
experiments in treatment combination/Hs the coefficient for theumberof an auctionn an
experiment Variable 0 describes whether a bidder wo n
describes the impact of winning in the last rouhable 3 summarizes the main parameters: the
interceptU, the regression coefficielfit for the unit costsb , and the multiple R? of the linear
regression.

We also compute thmean squared errdMSE) of the RNBNE functionto understand
how well the model explains théatain the different treatment combinationBhis metric is
lowestin C100+, indicating that the variance around the RNBNHumdtion is low. Plots of the
empirical bid functions can be found at the end of Appendi¥8.compare the MSE of the
linear RNBNE function against the MSE of a LOESS estimation of the (@aeland and
Devlin 1989. LOESSis also known as locally weighted polynomial regressishich can be
considered a best case model for the empirical ddtaach point in thelata set a lovdegree
polynomial is fitted to a subset of the data. The value of the regression function for the point is

obtained by evaluating the local polynomial using the explanatory variable values for that data

point.
Single lot
U b (unit Std. erroib Mult. MSE MSE # bids /
cost) (p-value) R? RNBNE LOESS bidders
RNBNE 2.53 0.748
H.S 211 0.821 0.005 0.923 0.854 0.676 2560/16
(0.000)
H.S #1) 151 0.869 0.028 0.897 2.127 1.936 160/16
(0.000)
HS #7) 1.87 0.793 0.016 0.952 0.587 0.387 160/16
(0.000)
H.S (# 16) 1.70 0.829 0.014 0.966 0.699 0.353 160/16
(0.000)
C1.s 1.92 0.767 0.039 0.862 4.828 4.740 120/12
(0.000) (0.598) (0.382)
C100.s 2.53 0.727 0.033 0.922 0.415 0.392 110/11
(0.000)
C100+.S 2.08 0.797 0.008 0.991 0.104 0.083 100/10
(0.000)

Table3: Regression coefficients for the empirical bid functions (w/o bidder ID) of the single lot auction
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ThelinesH.S (#1) to H.S (#16) iMable 3 describe the results of the regression for the
empirical bid functions in individual auction
t oget her wcomparedto theiRNBNE fetiom indicates that there is underbidding on
average on lovcost draws in H compared to the RNBNE bid function. In auction #7, for
example, there is an underbidding of 18.7% at a unit cost of 1 compared to the RNBNE bid
function, while theres underbidahg of 2.75% for higkcost draws of 9 Francs.

The value of intercept U, which can be use
drawsjsat a mean Vv aldeeeased slightly i the lasTsix eounds from a value of
1.81 to a value of 1.70. This can be explained by some bidders who became more aggressive on
low-cost draws in order to become winners before the experiment was over. More aggressive
bidding acrossounds overall is also illustrated by a significantly negative, but low, coefficient
[ =-0.04.We found a smal/l but significantly-negati
0.06), which cannot be explained by regret. This small negative impaetiszabe observed in
the different spltaward auctions. Note that in this paper we want to analyze when the RNBNE
can explain bidding behavior in firprice auctions. This allows us to rule out explanations such
as strategic complexity as reasons forarbalding.The question, whether riskversion or rather
regret determine the underbidding in our experiments may be a fruitful exercise to look at in the
future.

The high MSEHRNBNE) in treatment combination C1.S is due to a single bidder who bid
substantially above the RNBNE bid function. Without this bidder, the MBE589. The average
underbidding at a unit cost of 1 is 18.02% below the RNBNE bid funcliomChow test allow
testing whether the regression coefficients of two linear regressions are significantly different
from the RNBNE. Therds no significant difference between the RNBNE prediction and
treatments C1004p = 0.999 and C100Q(p = 0.99). This meanghat even wihout information
about the bid functions of computerized agents, the empirical bid funati€®®s0q and C100+
are very close to thRNBNE bid function, which is also illustrated by tleev MSE. Note that
the difference in the interceptbetween C100 and C10G@s-caused by an outlier (sEegure16),
but that the MSE is lower in C100+ as expectdkk will alsofind no significant diffeence
between C100+, C100, and the RNBNE bid function in the-aplétrd auctions

Most, but not all, empirical bid functions in the singe auction increased

monotonously, but therarealso some spikes. These small fmanotonicities which we found
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aaoss all treatments might be due to errors that bidders make when typing in the data in spite of
the graphical display of their bid function.

Discussion:As already discussed, overbidding on large valuations in experiments gorifiest
sealeebid salesauctions is a consistent pattetirchkamp and Reiss (201Xeport median
overbidding of up to 30% over the RNBNE on higdlue draws, but even modest underbidding

for low-value drawsPezanisChristou and Sadrieh (20p8port average relative overbidding
over the RNBNE prediction of 337% for thei experiments with symmetric bidders. These
authors also use the strategy method. However, since they test sales auctions and the number of
auctions and competitors is different, the level of overbidding in their experiments cannot easily
be used as an @state for underbidding in our reverse auctidkischkamp and Reiss (20}),Ifor
example, used 12 iterations and two bidders in experiments, while we habliddars in 16
rounds of a reverse auction. Underbidding for low unit costs of 1 Franc in our experigr@ants
average 189% below the RNBNE bid function in treatments C1 and H, as described above. As
we will see, the level of underbidding in treatmenfisabd H increases in sphivard auctions,

while C100 and C100+ are not signifitlrdifferent from the RNBNE predictioas well

4.2 Parallel Auction
We will nowdiscuss the results of the parallel auction, which requires bidders to think about their
bids for the small and the large lot. The results are organized similar to those of thdasingle

auction.

Results on singlelot procurement auctions

P1: Thereis underbiddingin treatment Hbut the level of underbidding decreased after a few
rounds.We fail to reject Hypothesis 1.

P2: The RNBNE strategyescribeghe empirical data in C100 and C100+ in tparallel auction

well. This suggests that wrong expectations and the strategic complexity of the parallel auction
have little impact on the biddinbehavior We fail to reject Hypothesis 3 and 4.

P3: We found underbidding on leaost drawsn C1 and reject Hypothesis 2. The difference to
C100 indicateshat risk aversion has substantial impact on bidder behavior.
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Support: Table4 follows the format ofTable3, but describes the regression coefficients for the
large and the small lot. The regression line of C1 has a much lower intercept compared to the
RNBNE bid function, which shows underbidding on lowst draws. This can be explained by

the impact of risk aversiomecause the only difference from C100 is the number of auctions in
which the bid function is used afterwards. The line H.P in Table 4 describes the relevant
regression coefficients of all human subject experiments where we control for bidder
idiosyncrasiesand the number of auctions. The subsequent lines describe the results of the
regression for the empirical bid functions in individual auctions (numbers 1, 7 and 16) in
treatment combinatibongdt h dm ew domparedtothédRpiEempt b U
bid function indicates that there is underbidding on average ostdsivdraws in H compared to

the computerized treatments in C100 and C100+. However, there is even more underbidding in
C1. Note that in the initial sealddd treatments with C100 ar€t100+, we have elicited the bid
function for 20 unit costs from 0.5 to 10 Francs, while for the human subject experiments where
students had to submit their bid function multiptees;we reduced this to 10 parameters. In test
experiments with treatment combination C1, we did not find that this hadngract on the

shape of the bid function in the experiments.

Large lot Small lot
U b ( uni|Mult |Std. errob | U b (uni|Mul. Std. erroh | # bids /
R? (p-value) R2 (p-value) bidders
RNBNE 3.59 | 0.643 3.37 | 0.67

H.P 1.70 | 0.778 0.951 | 0.004 2.68 | 0.735 0.929 | 0.004 2560/16
(0.000) (0.000)

H.P (#1) 145 | 0.777 0.937 | 0.017 2.07 | 0.765 0.950 | 0.015 160/16
(0.000) (0.000)

HP #7) 1.74 | 0.772 0.961 | 0.013 2.79 | 0.722 0.940 | 0.016 160/16
(0.000) (0.000)

H.P (#16) | 1.28 | 0.785 0.963 | 0.013 1.85|0.731 0.950 | 0.015 160/16
(0.000) (0.000)

C1.P 1.48 | 0.854 0.938 | 0.022 1.81 | 0.805 0.947 | 0.019 120/12
(0.000) (0.000)

C100.P 3.70 | 0.697 0.966 | 0.008 3.67 | 0.680 0.977 | 0.007 260/13
(0.000) (0.000)

C100+.P 3.49 | 0.626 0.963 | 0.008 3.39 | 0.621 0.957 | 0.009 220/11
(0.000) (0.000)

Table4: Regression coefficients for the empirical bid functions ofoduallel auction

In Table5, we have provided the MSE of all three models for the parallel audtien.
MSE s again lowestn C100+ and in C10Q0marked in bold ifrable5). Actually, C100 hagven
alower MSEthan C100+ for the small lot. TRMSE of C1 is alsamuch highethan that of C100
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andC100+ anchigherthan H where some of the risk aversion might be eliminated due to the 16
repetitions of the experimend/e have added additional statistics to compare the RNBNE against
the predictive power of a modelith a constant profit margiand tle RNBNE of a singlétem
first-price seale¢id auction This shouldhelp understand how sensitive the predictions are. The
model assumindpidders hada constant profit margin had the worst MSE in all treatmd+us.

this modelwe used theaverage markupf the RNBNE functionacross all drawss the profit
margin. For the treatment combinations C1 and H the RNBNE of the single item auction has a
lower MSE than the RNBNE of the splaward auction This caneasily be explained by the
underbidding observedithese treatments. In a singem auction with the same number of
bidders the competition is higher, which brings down the bid prices in equililtv@low that of

the RNBNE in the sphiward auctionAgain, the MSE for the treatment C1 is highest, Wwhic
can be explained by risk aversion and the differences in how bidders respond to risk a&ersion.
few bidders deviated substantially fraime RNBNE prediction, which led to a high MSE (see

Figure4).
Large lot Small lot
MSE MSE MSE MSE MSE MSE MSE MSE
LOESS | RNBNE | Single Item | Constant | LOESS | RNBNE | Single Item | Constant

RNBNE Factor RNBNE Factor
H.P 0.329 1.160 0.449 1.124 0.403 0.607 0.484 1.089
HP #1) 0.578 1.107 0.629 1.165 0.568 0.708 0.690 1.059
HP#7) 0.269 1.037 0.386 1.059 0.319 0.496 0.424 1.050
H.P(# 16) 0.319 1.340 0.508 1.223 0.453 0.750 0.539 1.234
Cl.P 0.827 1.668 0.948 1.234 0.682 1.057 0.730 1.129
C100.P 0.269 0.328 0.406 1.037 0.187 0.192 0.443 1.055
C100+.P 0.141 0.175 0.464 1.337 0.206 0.260 0.542 1.441

Table5: MSE of the RNBNEDRN the splitaward auction, the RNBNE&f a single tem auctionandthe MSE of a

constant profitmargin modelThe MSE of the LOESS estimate serves as a baseline to compare against.

As an examplefrigure 1 describes the bid functions in the fiestd seventh auction of H
for the large lot. A thick solid line describes the average bid function based on a linear regression,
while a thick dashed line shows the RNBNE bid function. In both plots, we can see the
underbidding in the lower values compatedhe RNBNE bid functionFigure 2 to Figure8 in

Appendix 3 show the bid functions for all other treatments in thél@aaaction.
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The intercepts of both C1.P and H.P are much lower than those of the RNBNE bid
function for the large and the small lot. Underbidding below the RNBNE for low costs of 1 Franc
on the large lots on average 40.63% for treatment H (auction #7J 44.79% for C1. On the
small lot, we observed underbidding of 13.07% for treatment H (auction #7) and 35.27% for C1.
By comparison, in the singlet reverse auction, we observed ardul819% for both
treatments.

Risk aversion can serve as a natuxgll@nation for the underbidding in C1.P. In H.P, the
residual risk aversion in spite of the 16 repetitions, but also other conjectures such as regret, can
be potential reasons for underbidding on Jowst draws.However, given our experimental
design wheréidders do not learn about their opponents, we conjecture that risk aversion serves

as the most likely explanation for underbidding in treatment H.

12 —| = Bid experiment P 12 - = Bid experiment
1“4 = Bid equilibrium 'g-’ P Ml Bid equilibrium
10 10
9 9
8 8
o 7 - 7
s 6 m 6
5 5
4 4
3 3
2 2
1 1
0 0

Variable costs Variable costs

Figurel: Scatter plot of bids and the optimal bid functions for H orahge lot for the first (left) and the 7th
auction (right) for the parallel auctiog € 0.7)and a fixed cost df=1.

The Chow test shows equivalence betweerRNBNE bid functionand those irC100+
for the large 1p = 0.7399 and the small lofp = 0.939. Thereis also no significant difference to
the average bid functions in C1@&r the large § = 0.2698 and the small lo{p = 0.03)). The
test shows that the bid functions in C1 and H are both significantly differenttfrorRNBNE
bid function for bat lots(p = 0.000).
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P5: The correlation between the markups of bidders in the large and in the smsihigh, and
the markup on average in the small istsignificantly higher than in the large lot, as theory

predicts.

Support: We found the markups between the large and the small lot to be highly correlaged (H (
=0.981), C1y =0.968), C100y(= 0.977), and C1004 (= 0.973)). In other words, bidders with

a highmarkup on the large lot also haaehigh markup on the small Iothe differences in the
markup between the large and the small lot in all treatnsetEgnificant throughout (paired t
test, U sugdestibat Hiddersin laversige followed the sarsgategy in both the large
and the small lot an@n averagethey bid lower on the small lot where there is also less

competition, which is in lia with the equilibrium predictim

Discussion: Overall, the results from the computerized experiments C100+.P and C100.P
confirm rational bidding behavior according to tRNBNE model Wrong expectations or
strategic complexity do impact bidding behawagnificantly. Underbidding in C1.P on lowost
draws can again be explained by risk aversion. This underbidgdimgher than in the singliet
auction, in particular on the large lot. We conjecture that bidders tried to win the large lot with
low prices, because it promised a higher total payoth w2 units. Risk aversion can also serve
as one of the reasons for underbidding in E&e to the 16 repetitions risk aversion is mitigated,
but not eliminated. Regret and spite might also play a role, but due to the experimental design,
where bidders dishot knowtheir opponentswe assume these behavioral conjectures to be less
important. This is supported lpmmentsof participants after the experimergsplaining their
bidding strategyAlso in treatment H.P,ibdersareaggressive on the large l@nd they started

with a higher bid on the small lah case of low cost draw$lowever, the bidding in the last

rounds also became aggressive on the small lot with lower bids on tHesbwraws.

4.3 The Yankee Auction

In addition to the parallehuction, we also analyzed how well equilibrium bidding strategies
explain bids in the different treatment combinations in the Yankee auction. The strategic
complexity is highethan in the parallel auctipmecause bidders do not know if an aggressive
bid will actually win the large lot, rad if they do not win the larget, they might win the small

lot with a very lowpayoff. Again, we provide results ifiable6 and scatter plotéAppendix 3.
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Results for the Yankee auction

Y1: Thereis underbiddingin treatment Hut the level of underbidding decreased after a few
rounds.We fail to reject Hypotsis 1.

Y2: The RNBNE strategyescribegshe empirical data in C100 and C100+ in tiankeeauction
well. This suggests that wrong expectations and the strategic complexity Ydirtkeeauction
have little impact on the bidding behavidve fail to rejecHypothesis 3 and 4.

Y3: We found underbidding on lowsost drawsn C1 and reject Hypothesis 2. The difference to

C100 indicateshat risk aversion has substantial impact on bidder behavior.

Support: We provide the same statistics as for the parallei@uat Table6. The MSE values

are comparable to the parallel auction. Towest MSEvaluesareagainachieved for C100+ and
C100. C1.Y haslso a significantly lower intercept that can be attributed to risk aversion. In
CLl.Y, thereis a clear outliera bidder who submitted very high bid functions leading toga
MSE RNBNE of 3.372 Without this bidder tht/SE RNBNE for C1.Yis 1.024

U b Std. errob | Mult. | MSE MSE MSE MSE Number

(unit cost) | (p-value R? LOESS | RNBNE | Single item| Constant | of bids /

RNBNE factor bidder

RNBNE 3.53| 0.647

H.Y 2.49| 0.756 0.004 0.941 | 0.475 | 0.766 0.532 1.062 2550/16
(0.000)

HY #1) | 2.68| 0.724 0.018 0.930 | 0.907 | 0.989 1.297 1.623 160/16
(0.000)

HY #7) | 219] 0.743 0.012 0.963 | 0.317 | 0.573 0.360 0.941 160/16
(0.000)

H.Y(# 16) | 1.92 | 0.800 0.011 0.975 | 0.355 | 0.914 0.418 0.892 160/16
(0.000)

C1yY 2.05| 0.783 0.028 0.860 | 3.191 | 3.372 3.5631 3.647 110/11
(0.000)

C100.Y 3.21| 0.684 0.007 0.973 | 0.192 | 0.213 0.396 1.039 260/13
(0.000)

C100+.Y | 3.66| 0.682 0.008 0.972 | 0.148 | 0.166 0.342 0.995 220/11
(0.000

Table6: Regression coefficients for the empirical bid functions (w/o biddepfe Yankee auction with g =

0.7. The numbers in brackets for C1.Y describe MSE values w/o one outlier.

The line H.Yin Table6 describes theegression coefficients of all the bid functions with
the number of the auction as an additional covariate. As in the parallel auction, we find a low
i nt ertcoegpett hUe r  w comparedito thé RINBNErfundbion in the analysis of auctions
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1, 7 and 6 in H. This means that, also in the Yankee auction, bidders in H underbid -@osow
draws compared to the RNBNE function, which wemabserve in C100 and C100+.

We have included the MSE for the singlem RNBNE and that of a constant profit factor
model inTable6. In the Yankee auction, the spiitvard RNBNE model had the lowest MSE in
treatments C100+.Y, and C100.Y. For H.Y and C.1 (w/o thieouthe singleitem RNBNE had
a lower MSE, which can again be explained by the fact that the siegleRNBNE model leads
to higher competition with the same number of bidders and lower equilibrium bid price, which
better fits the average behavior afiiaverse bidders.

As an examplefigure9 describes the bid functions in the first and seventh auctions of H.
We provide the bid functions for oth&eatment combinations in the Yankee auctioifrigure
9Figure 10 to Figure 16n Appendix 3.

The Chow test shows that there is no significant difference betweeRNB&E bid
functions in C100+g = 0847 and C100§ = 0.907, but there is a differende H andC1 (p =
0.000). Underbidding below the RNBNE for lesast draws of 1 Frans on average 29.78% for
treatment H (auction #7) and 32.18% for C1. Tisigss than in the parallel auction.

Discussion:Bidders in the Yankee auction do not know a priori if they will win the large lot or
the small lot with their singieid price. The high predictive accuracy of the RNBNE function in
C100 and C100t1s, therefore, an interesting result. In particular, ther® significant difference
between C100 and C100+ and no significant underbidding, indicating that strategic complexity
had little impacteven in the Yankee auctiom line with what weseein the singlelot and in the
parallel auction, wdind significant underbidding below the RNBNE bid function in C1, which
can be explained by risk aversion. In the treatment combination H, the level of underbidding on
low-cost draws increassslightly across the 16 auctions in a sessighich can be explained by

losing bidders in the initial rounds who bid more aggressively in later rounds

4.4 Predictive Accuracy acrossAuction Formats
Let usnow summarize the results across all auction formats, the $otgtee parallel, and the

Yankee auction.
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Results for theall three auctions

Al: Thereis underbiddingn treatment HWe fail to reject Hypothesis 1.

A2: The RNBNE strategglescribesthe empirical data in C100 and C100+ in the sintge
auction well.We fail to reject Hypothesis 3 and 4.

A3: We foundunderbidding on lowcost drawsn C1 and reject Hypothesis 2. The difference to
C100 indicateshat risk aversion has substantial impact on bidder behavior.

Support: First, the results S3, P13, and Y13 are in line.In addition, in ordeto analyze the
predictive accuracy of the RNBNE model across auction formats and split parameters, we have
pooled all observations (Parallel and Yankee auction) within each of the four treatment
combinations, as well as the observations for different ppliameters (0.7 and 0.9)Ve have

then used the RNBNE prediction as rigifaind side variable for the bids in a regression. A
coefficient on the RNBNE prediction close taslstrong evidence for the RNBNE model, and it
demonstratethat subjects understarhe strategic differences across the auction sesgigas,

for C100+ and C100 we find evidence for the RNBNE model, while the resulakle 7
indicate underbidding in the treatments C1 anébart from the standardtest forb=0, we have

also tested the null hypothesis @f1l. The difference of the coefficieft to a value of lis
significant in all cases, although thés already very closeotl for C100 and C100+.

Treatment V] b (RNBNStd. Er | p-value p-value
(_$0) (_#1)
H -1.867 | 1.188 0.005 <2e16 0.000
C1 -2.151 | 1.268 0.052 <2el6 0.000
C100 -0.460 | 1.060 0.009 <2el6 0.000
C100+ 0.139 0.980 0.006 <2el6 0.004

Table7: Regression coefficients of the RNBNE prediction across auction formats.

4.5Procurement Cost Comparisons

The final result of our theoretical analysis in section 2.3 is that the expected costs of the parallel
and the Yankeauction are the same. In this subsection, we report on allocative efficiency and a
cost ratio which normalizes the actual procurement costs by the costs of the bidders in the
optimal solution. This allows for comparison across different cost draws ithierss, because
average procurement costs can differ significantly due to the cost draws of the bidders in

individual auctions.
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Allocative efficiency is computed @ & G cO T® @ ¢U , where and
& are the variable costs in thefieient allocation for the large and the small lot, @andand ®
are the costs of those biddérandj who won the auctionCost ratio is defined a8 G
@ cOT® o ,wherew and® describe the winning bids by biddérandj on the large
and the small lot, respectivelyf bid prices in the winning allocation decrease, this ratio

increases, i.e. a higher number is better for the buyer.

Result on procurement costs across auctions
C1: The parallel auction and the Yankee auction exhibit no significant differences in efficiency

and cost ratio within the same treatment, as predicted by Proposition 5.

Support: Overall, effigency is high in all experimental treatments. We did not fingyaifecant

difference in efficiencyE or cost ratioC within the same treatment combination between the

parall el and the Yankee auction using a Wilco;
Efficiency E Cost ratioC
H.P 96.17% 83.63%
ClP 96.62% 71.32%
C100.P 99.01% 51.91%
C100+.P 99.39% 51.63%
H.Y 96.49% 79.62%
CcLY 99.24% 67.48%
C100.Y 98.50% 51.95%
C100+.Y 98.78% 51.60%

Table8: Ef ficiency and auctioneerds cost r e

There are significant differences between the treatment combination H and C100+ for both split
parameters (U=0.01). H has | ower efficiency a
both the parallel and the Yankee auction. The lower cost inai ke attributed to the
underbidding that we described earlier in human subject experiments. So, in spite of differences

in the bid function and the underbidding in the lab the outcomes of the aaiarline with the

theoretical prediction.
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5. Concluwsions

In this paper, we analyze two sealdd splitaward auctions which are regularly used in
procurement practiceWe obtain closedform symmetric Bayes Nashequilibrium bidding
strategies and several interagtimodel implications. We prouw@at if suppliers are riskeutral

and the production cost information is private, then the two auction mechanisms are equivalent,
in the sense that they yield the same expected costs to the busguerimental work on the
first-price sealesid auctionhas shown a consistent patternuofierbidding This can be due to

risk aversion, regret and wrong expectations, but dlssto the complexity of deriving the
RNBNE bid function. It is not obvious that RNBNE strategies could be a good predictor for split
award procurement auctions, where bidders are exposed to increased strategic complexity
compared to singhot reverse auctions.

We provide the results of lab experiments with different levels of control. The
experiments against computerized bidders aeannito limit the influence of risk aversi@amd
regretas far as possible. Interestingly, there is no significant difference between the average bid
function of bidders in the lab and the RNBNE bid functionour computerized experiments
where bid functins are reused in 100 auctio$is is different to earlier experiments of first
price sealecbid auctions, and we attribute the result to our experimental déhignability to
control risk aversion in thexperimentsallows us to analyze whether biddeare able to cope
with the strategic complexity in these markets. The repuoltgide evidence that bidders are well
able to mimic their RNBNE bid function even in strategically compankee split-award
auctions.Overall, there is no evidence that theategic complexity or wrong expectations of
these auctions explain underbidding in human subjects experiments. Hothevesults show
thatrisk aversionhassubstantial impact on the bidder behawaod we conjecture it is a major
driver for the underidding that weseein human subject experimeni¥/e find underbidding for
low-cost draws compared to the RNBNE bid dtion, which typically increasem the latter
auction rounds.

Regret and risk aversion are two possible extensions of our moaets ale the
experimental work in this are# would also be interesting to analyze markets with very high
fixed costs in the lab or explore more comptest functionsHowever, we firstly wanted to find
evidence that human subjects are ablmitmic their equilibrium bid functions even without this

added complexity.
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Appendices(For Reviewing Purposes)

We provide an appendix which includes the detailed derivations of the equilibrium strategies
(Appendix 1), instructions for bidders in the lab (Appendix 2),tecqtiots of the empirical bid
functions (Appendix 3), and results of the experiments with a split parameter of 0.9 (Appendix
4).

Appendix 1
Proof of Proposition 1

Let (,(b), £(b)) denote the inverses of the equilibrium bidding strategies. Given the symmetry
of the bidders we examine the decision problem faced by a typical bidder, say biddef], | et

and C,, _,denote the lowest and the ead lowest order statistic among tHé- 1 private
production costs of the rival bidders. Since private costs are independent and identically
distributed the joint density dfC,y.1,C,y 1) is
(A.1)
0:>(Cin v Con D= (N (N 2) (G ) (G [T HGCx A"
Bi dder 18s expected pybd antlhisscest ean Bewrittentds on of h
(A.2)
p(b,b,=Pr(Cy, 2 f(h)gh ¢ a Kg
+ P I )XCy £1,) Cua (b, ¢ (L) K

The probability expressions in the first and second terms are given by
(A.3)

PrCu,2 F,(0) 1 F( L))"

and

2 See derivation below.

33



(A.4)
Pr(f,(0,)>Cyy 4. £(b,) ¢Cyy )

& & Nl _
Te 5(0,) ¢ n ng(C]_N- 1 CZN _]) dClN 1dgN 1 |f f( Q ¢ fg Q
{

e Am
2 nl(bl) c n ng(Cl:N—l’ CZN ]) dClN 1dC2N L

I a0 o if £,(b) > 4D,
Jf * I':’iz(bz)rhj - Y (CliN-l'CZN ]_)dCJ_N 1dC2N L
Therefore, the expected payoff function becomes
(A.5)
p.b,c)=
? [1' F(f1(b1))]Nlébl 'C)q K g + |
f1(k) if fl(b]) ¢ £(b2)

gb- )0 -0 K, "Ba(G.Cy)dG, ,dG, ,

|
1
I
- Fee)" gb 9a K g +
! o %G Can I 9o s i 1(B) > D)
~ 1Ay 1d 12\ MIN- 11 2N - N 192N 1 T 7y
':\gbz- C) (1 -q) K H (bl),J,‘l(bl) Comet ,l:l
T :' + ) c N 9% (Cl:N-l’CZN —1)dC1N 1dC2N 1-;'/

Taking the derivatives with respect to the decision variaiféd}) and imposing the

equilibrium conditior€=7,() =4(b,), we get the following system of equilibrium differential

equations®
(A.6)

(1' q)fj ;ﬁz(cm-y CZN 1) dCiN 1dgN 1

~ * 1 * A _
_@g12(C1:N—1’C)dq.N 1 bzl(C) ébﬂc ()(1 ) KQO

is the firstorder condition for,and the firstorder condition for is

3See derivation below.
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(A.7)
~(N-D)f(c)
by(c)

1 FE) e gERedac, tgol0 da a- Kgo

[1-FE)|"“*gb(0 €a kg

Firstorder condition (A.6) can be written as
(A.8)

@ Db OF (G D1 F(Cu J]" " 4Gy
" AR HL Gl B ol R

Integrate both sides of equation (A.8) gives us
(A.9)

- )b, @F FO9[1 -FOg" axt

= F0@ @) KL FE' dx C +

U]
1- Db,©F T[L -FO" T dx =@a 9 KO A" dx
U
Axf (9[- F(x]"* d
b,(c) = < +rJEX &l (X)]N3 " : - N
19 Jrooft- Foo"ax @ -9 o1 FO° dx

1 N-2 1 N 2
K +N_2(:[1- F(o)] mm[l F(¥)] ~ dx
1- g (ol Fel

I\IE 1_ F N—2d
L S Q[ (X)]N_2 XWith the boundary conditios, c( )—5— c
1- ¢ [1- F ()] 1-q

First-order condition (A.7) can be reformulated as
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(A.10)

wo 1 F@©)) Tq_ g y _
T - 'lez(c, Con. 0 dCy gb£¢ -()(1 % Kg

-(cq #)(N B f(9[1 F9]"* (using equation (A.9))

O |

e 5 N-2 o

5 vs  J @l -Fe] T dx

= {N D(N 22f(c)n f(¥|1 F) dx| )
0 fooft Fed :1 - F©)]

-(ca #)(N B f(Q[1- FE)"™
Integrate both sides of equation (A.10) gives us
(A.11)

é 5 N-2 a

. L. Fa- q)m[l -F o] dx ¢

(N IXN 2)F(y) A1 F( dx = i d
i Pl :1 [1- F(y)] 1

b(Y[1- FX]" " af =

o 1 2

<

-rj(xq H)N D F(Y[1 KR dx
U

5O FE a1 AN DF-F() A FOF dxdy
-(qc #)[1 F(]"" qrj[l Fs9]" " dx+ C

U (using boundary conditiofy, c(3c S )
q

< Al Feol" ax @ aN DF F0) @ Fod" axay

b(c)=c + T uld
° Fe) [1FE o
_ K fj[l- F)]" " dx (1+- a)(N -1)gFjF(x)[1 F)"° dx F(ij[l FQ)QN'deg
a [1-FE)" - FO]q

This completes the proof for bidding strategies. The monotone increasing property of bidding
strategies can be easily checked by the first derivatives of the bidding stratéthethe

standard assumption of lexpncavity on the cumulative distribution furmet F(Q such an

equilibrium is unique and it is characterized as the solution to the system of differential equations
corresponding to the firgirder conditiongLebrun, 2006)Actually, the result only requires leg

concavity at the highest lower extremity of the supports.

36



Now we turn to prove the additional claim in Proposition 1.

Claim: 4(c)q> A9l -0).
Proof:
b(c)g- Kol -9 =q K

- i«:)] fjgil i((x)) 8{0[1 O AR R

ol g) K (& q)”?él% 8 dx

—o2q ) ﬁal F() '8edl -F(9] @ (N DLFD) Ral g

X

F(c) rd e 1 -F(c) u
;81- F(x) (2 DL FX)] (B 9N 2)[F(X F(d
=c2q ) ﬁ “Fe) 2 €, 1 -F(c) b~ v

>0
sinceq> 0.5and 15 X pF o ) for X <.

Claim: 6,(c)> {0

Proof:
K
b,(c)- Hc) =¢ q

'q[l_lp(c)] EREE S FO ¢ N DIRX R ox

N sal- F(x) 6’
e ﬁai Fe) 2 d
:<2q-1)+< ﬁcal F (x) %gl al_FOO) (¢ N DIF(Y Ko,
ql- @) 981 -F(o) 2 & q1 F(o a
_(29- DK 581 -F(x)“‘ég[ a- (N DJIFY K9l g
at- @) W& -Fo 2 & q1 F(o] 7

>0ifK X,

(1- q) &1 -F(x) o e[Nq (N D[F(® HQ] o
(2q- 1)08“1 Fe) 9 d1 F(]

where K, =

wlx

u
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Derivation of (A.2)

p (b, b, ©) = Pr(bidderi wins both Lotglh -0 q K g
+Pr(bidderi wins Lot 1 and loses Lotgh, <)q K g
+Pr(bidderi loses Lot 1 and wins Lotg), <) @& K g
=Prlp, @ | iandb, b¢j I'Eb c)q-K g -

+Pry ¢ by j jandb, b3 iforsom¢ gb c)a K g
+Pry, > forsomg i and, bt j i gb, c) €q )k g -
=Pr(oy @ [ i)gh c)a K g

+Pr(f,@0,) Cy.,and £6,) €, J&b, ¢ @ q) Kg
=Pr(f,0,)¢Cy.)&b -9q Kg

+@r(f,@) XCy.,) P fb) Cy.and fb,) Cz ) B ¢ € o) K

Derivation of (A.6) and (A.7)
If £,(b) ¢ #£(b), the first order condition with respect lipgives

5 ()
a- q)rrll(bl) . N 0 (G- 1y Con 1) dGy ,dCy

(A.12).
db-¢9@ 4 Kgo

pACY) 1

) C. »f(b))d A
2 Y]

and the firstorder condition with respect tig gives

_(N-DFEAEB), N-2 . N1
b,( f(b)) [1 F(fl(bl))] ébl €)q k ggl+F( (1)) g «

& Gulfi(B).Cyy
Mo ™5, o)

With the equilibrium condition=7,() =#b), hence, &) § and, £ ) I , (A.12)

(A.13).

])dcz:N-lgbz 'C)(l § kgo=

becomes
(1' q)Fj : ﬁz(CJ_N 1 C2N 1) dQN 1dQN 1

1 .
E§5gb4o-oa q Kgo

(A14).
- fj ng(Cl:N- 1 C) dCiN -1

and(A.13) becomes
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(A.15)

C(IN-DF(©p, N2 s
BCCH [1-Fe) "gbc) ¢a kg
_ N-1 ¢ 0,(C, Con. o) A _ .
+1-FE) a A 5o dCy..&b.(9 ¢ 9- Kgo
If £,(b) > f(b,), the first order condition with respect lbpgives
(A.16)
&, . A %:(Cov Cay )AC (GG 2+ J
(- q)éNfl(bl) Cone u
u
a

grf]z(bz) N 012(Cin- 1 Copy ) dCy ,dCy 4

~J2(b2) 1

- @ 012 (Con- 1.7 () dCyy ) ( £(0,)
and the firstorder condition with respect tg gives
(A.17)

a[1- (0]

N DL GO () s Ga Koy

b;)
ng(Cl:N— 1'f1(b1)) dClN -1 g

gb-9@ 9 Kgo

1(

| ‘sz\

e
g § u 1

€1y Gl (B Co ) 9C s 4= @D, -9 ) K g ©
g+r~51(b1) glz(CLN_ 1af1(b])) dC]_N B g

With the equilibrium condition=7,(b) =#b), hence, &) § and, £ ) br, (A.16)

becomes
(A.18)

(1' q)lljE :%(QN-P C2N 1) dc;lN 1dQN 1

L dbg9 90 9 Kgo

- rjng(Cl:N— il C) dq_N -1 bz‘(C)

and (A.17) becomes
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(A.19)
(1' q)rj :ﬁz(cm-l, C2N 1) dQN 1dQN 1

L .
bz.(c)gbz(o -9 9 Kgo

ng(Cl:N— Y C) dQN -1

‘Dzo

Thus, in equilibrium, the first order conditions for both bids are the same in the two scenarios.
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Proof of Proposition 2
Ns 2
0

po(c) _ 1 s81- F(x) G
UN _ql -F(c)]mgi =0 9 T(x ¢ N, g dx

whereT & c,N,g )=(afl-F()] € a)(N DEF(X F(9) lo

éll-F(x)@1 ]
Qém 2( Y[ Ky H$

We show thatT X ¢ N ¢ ¥ O foall values of the arguments satisfying
ci[cd, xi[¢cd N2Zandl/2 g 1¢
: al- F(x) 6 F(c) -F(X)
S |
e PE e TR
6@ 3 Ex EX :W(xcNg

T(xoNg<(dl-F3 @& §(N IR ¥ Eﬁ)w +

Thus if we show thatV X ¢ N ¢<9 0, then itlifaws that T(x ¢ N, ¢ <O.
One can rearrange the expressiorMtor geb

WixaN 9= oo 6RO 4 € 2 NRY (%2 R
The sign isdetermined by the expression in braces

Y(xaNag=H3 -1 @ g2 N3 (N2) K9l

Note thatY ¢ ¢ N,gF 2q- (L/2)][F(c) 1] &sinceq Hand H9 1. <
Note alsotha¥ ¢ ¢ N qF (Eq)2N )L F ¢)] GfallN>2.

To establish the sign of  fa¢ x ¢c , we ndbat

Y (xc N a= f(31-N1 ).

Case (i) : Ifg< (N -1)/N thenY, & ¢ N g) <Oforalx &Since Y ¢¢ N ¢ Owe get

Y(x¢ N g<Oforall x2c

Case (ii): If g>(N 1)/ NthenY, (x,c,N,q) ® forallx & SinceY {c,c N)q 0 we get

Y(x ¢ N g<O0forall xi[¢ d.

,(C)

UN
o N: 2 o N

ub,(c) _ gal- F(x) 0 o 1laF (x) q 0

o E R O IE Y

aF(c)- F(¥) ©

The case fo < 0 s easily establishedtsithe integrand is negative for allwas of tle arguments
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Finally, the partial derivatives @ an@ with respect t(m ar

ub(c) _-1%, N )~a1 -F ) 0 F(x) F(©),

o eg PG ¢ 1 R Xf°<
ub,(0) K
g @ -0

Proof of Proposition 3
The expected payoff o generididderi when his cost is and he bid® and all his rivals use a

monotone equilibrium bidding strategy(c) with inversef (b) is*
(A.20)

pb,O=[1 -F(L)] "&b §a Kg

+HN DFEO)[L F(M) b ¢ 9- K

The first order condition with respect flogives

(A.21)

b©ef[1- F@]" a «N BFQ[L F"* @ o

+2—(N D1 FE)f@©a (N DL Fe"" @ 9
& (N DFE(N 21 RO f(oe a-

_Ce(N D[ FE)"f©@a (N DL Fe" @ 9 -
&N-DFE(N -2[1 F(©)]" f(90- q)

+Kg~(|\| D[ FE)"f@©a (N DL Fe" @ K

& (N DFE(N 21 RO f(9a 9- H

or,

2
b
H

4 See derivation below.
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(A.22)

%:{b(c){[l- FE] a 4N HF@Q[L Rg"* @ QH

:Cg-(N D1 FE)" 7 feg (N Df[L Fe" " @ 9 -
gN-DF(E(N -2)[1 F(@E]"* f(o@ 9

+K2,-(N D1 FE) fEeg (N DL Fe" @ K
& (N DFE(N 21 RO fEd- ) H

Integrating both sides of (A.22) yields (A.23).

b1 F@" a N RO Fe"*@ df -
=pxa{[L -FOO" 6N DR Ryt o)
ska{[s -Fl N DFER[L Fe" Y C
=X -FO]"a e DEQL Fe" T @ g}

-,75{[1 F"a N DFQ[L Feg" @ o}
+K{[1 FO] (N DF[L F(x)]”‘z}ﬁ C

= ot FE""a (N DFE[L Fe" @ d -
-rj{[l F"a N DFQ[L Feg" @ o} dx
-K{[l FOI' N DF@O[1 F({;)]N'z} C +

Therefore,
(A.24)

{[1-F(x)]N‘1q N HFX[1 R 7@ (ﬁ-d)
{[1- FE" g AN BFE[1 R9"*a Lﬂ
K {1+(N -2)F(c)

{[1- F@)]a «N HFOQ of

b(c)=c +D

With boundary conditiow(c) = ¢ 41% , the equilibrium bidding strategy is
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(A.25)

I [ MR O G M
i {[1- F(C)]N-lq .|(N ]:)F(C)[]_ F_(C)]N-z (1 q}_
K {1+ (N -2)F c}
{- FOla N DFOC df

This completes the proof. Again, the monotone increasing property of the bidding strategy can be

checkedvy calculating the first derivative of the equilibrium bidding strategy.

Derivation of (A.20)

p(b,c) = Pr(bidderi wins Lot igb -c)q K g Pr(bidder laseot 1 and wins Lot 2)* (k& 9-(1 q)-K
=Pr( is the lowest bicb -c) g K g[ +Pi( is the secdodest bid] * (& {1 9 -K - g
=Pr(f ®) C,p.y)EP &9 K gPrCipn.yy $O) € ) (B FQ 9- K- g

=[1 G(fb))gb g kg

+8PrCupn.yy ) PrCn, A0)andG,, H®)gb ¢ € q) Kg-

=[1 G ®)Eb ga Kg[ (Y G, (B)] (@ FCL- ¥ K g

=[1- F(r(b)]" "&b -9 q K g

1 Feo™ &0 Emyt Fem)tt @b 9¢ o Kg-
. & TN-1 )1 $

=[1 Fr®) 'gb €q K g
+{1 {1 FEo))" 1-[1#F ()T (N OF(O)f1 F( (tf,\]“}gb )@ o Kg
=[1 F(F®)]" "gb- ) q-K geN D-FF(BL FAY)]" T (B 3¢ 9 K g
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Proof of Corollary 1

For the winner of the large lot, ex post, his profit is

PrOﬁtlarge:b(Q)q -GQ K =

A Feol"a AN DFR[L RO T o} ox

N-1 N 2 q
{-FE]"a AN DFE[ Re)" @ df
{1+(N -2)F ()}

K <cq K

T FG g 4N BFea o O
,“j{[l-F(x)]“'lq N HFX[1 F" @ q}-dx

= N-1 N 2 q
(- FE™ar (N DF@ FE" @ o

. K(N-DF(G)Rq -)
{[1- Fe)la N HF@E)Q df

Since g > 0.5by assumptionProfit

cq+

large > O '

Similarly, for the winner of the small lot, ex post, his profit is
I:)r(:)ﬁtsmall = b(C| )(1 'Q) e (1 q) K- =

A Foo " a AN BFOL RO T o} ox
C|(1' q) + {

{1+ (N -2)F @) : _
-FE)a 4N dFa g oo P K
Bl P a N 9FG[L FW] - o) o

(- FeI"a AN BFEL FE" @ o
. K[1- F(©)]@ -2q)
(- Fe)la AN HFEQ df

+K (1 -q){

(1-q)

N1 Nz ()
[1- Fe)"a AN HFE[ Re)" @ df

Since g > 0.5by assumption, the second term in the last equality is negative and depéfds on

and the first term is positive and independenkofTherefore, the profit for the winner of the

small lot can be either begitive or negative depending o, G, F(Q, N andq.
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Proof of Proposition 4

We first examine how equilibrium bidding strategy changes when the number of bidders

increases. Denote

{[1 Foo] g N BHFX[L R @ q}dx

(- Fe"a N HFE[1 RO"*a o
{1+ (N -2)F (c}

{[1 FO]a «N HF(@ d

as the equilibrium  bidding strategy when there areN bidders and

{[1 Fe" g ANF(R[1 F(X)]Nl(l q)}d>
{1 Fel o R (o
K {1+(N DF(c)
{[1- FE]a +NF(o@ )
strategy when there alet+1bidders, then
bya(©)- A
_rg{A+B Dpdx  [1- FE]F©[2q
[1- FE)"" E
where
A=[F(9) -F][1 F]"'[1 o] d
B=[F(9 -F(][1 FX|"" FIRL &
D=[F(0) -F(][NF(9 2(N LyF(oR»® NRY q[ R}~ @
E={[1 -F@©]a &N F@ aH{[1 Ro)]a+ NF(9@ -a}

by (c) = c*

N+1( )

q)} as the equilibrium bidding

Since q>0.5, the second term is always positive. In the first term, since we have

F(C|) <F(X), A<0, B<obut Dcan be positive or negative dependinggo) andN. Therefore,

the sign ofthe first term is uncertain. As a result, there exists a threshold condition on the fixed

costK as function ofN, F(®andc :
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byn(©)- R(A) B( 8) W (HKLN,cF)

where
r“-j{ A+ B +D} dx

K,(N,c, F)=
D F T Foea 1

We then examine how equilibrium bidding strategy changes when the size of the first lot

increases.

ub(e) _ 1 :

bd - {[1- NF(9lg tN B R}’
) a1 Ng 2
Tk (v F@INAO 3 (M D —% 8 1Ry R o
T ¢l- F©) =+ i

There are several interesting features of the way equilibrium bidding strategy varies with the
size of the first lot. First, ate that the sign is independent of lot size. Second, the rate of change
is not uniform in per unit cost. The integral in the second term is always negative, but the first

term can be positive or negative dependingF¢c) and N. If the unit cost is lesthan the

(1/N)th quantile of the type distributiofr, "(1/N), then both terms are negative, i.e., bidding

becomes more aggressive as the size of the first lot increases. For larger values of the per unit
variable cost, bwever, an increase in the size of the first lot may lead to less aggressive bidding
in equilibrium depending on the values &, N,F(@andc.The precise condition can be

expressed as a threshold condition on the fixed &bsas function of N, F(®andc :

%w( Q) K 6MKNCF)
where

1 N-1 s81-F(x) 6
1+(N 2)F () NF(9 P& F(o) ¢

K,(N,c, F)= [F(¥ -F(J] dx
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The threshold KZ(N,C, F) is always positive forC> F'l(llN). It is easily seen that
K,(N,c, F) decreases witN since it is the product of positive terms each decreasihg iBy a

similar argument one can easily establish that the thredhg(l, C, F) is decreasing ie. Thus,

in situations characterized by high fixed costs, many bidders angbéigimit cost, an increase in

the size of the first lot leads to less aggressive bidding. On the other hand, low fixed costs, few
bidders and low per unit cost make bidding negatively related to the size of the fisielot
bidding becomes more aggresswhen the first lot becomes larger.

Proof of Proposition 5:

In the parallel auction model, since the equilibrium bidding strategies for both lots are increasing,
in equilibrium, the bidder with the lowest marginal production cost will submit the Idwasson

both lots and hence be awarded the larger lot. On the other hand, the bidder with the second

lowest marginal cost will win the small lot. Therefore, the expected payment to a supplier with
private production cost C from the buyer IS
EP i (G) = £,(¢) dPr(¢ is the lowest costy 4 € )(1q )P isetsecond lowest co:

Because of symmetry, tlex-anteb uy er 6 s expected cost in this

ECouyer = ij[bl(q) oPr(¢ is the lowest costy & ¢ )(1-q )P is thecond lowest cogt)f ¢

In the Yankee model, every bidder submits only one bid. The bidder with the lowest bid wins the

larger bt and the bidder with the second lowest bid wins the small lot. Therefore, the expected
payment to a supplier with private production co$t from the buyer is
ER....{C) = b(c) OPr(¢ is the lowest cost} b ¢ )(1-q )Py isetsecond lowest co:.

Because of symmetry, tlex-anteb u y e mpexted ceskin this model becomes

EGuue = N[ £(6) dPr(g is the lowest cost} b ¢ )(1-q )Pg is thecond lowest cogt)f &

“Dzm
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(A.26)
D =EP

parallel

= b,(c)gPr(G is the lowest cost} b ¢ )(1g )Pg( is tkecond lowest cos,
- b(c)gPr(c is the lowest cost} b¢( )(1g )Pr( isthecond lowest cost)

ER

Yankee

where Pr( is the lowestcos) Ry( <G,., J= 1~¢(") and

Pr(c is the second lowest cost) ®rcCy ., ¢, €, 4
=Prc XCy.,) PG Gii¢ Cgu)
=(N DF@EQ)[L FE)"?

Then, together with the equilibrium bidding strategies defined in Proposition 1 andhadyave
D =6l F()"" K1 Feg)"” cf’j[l—l F(3" © dx

LN DFFE[L R o Fee) T FOJ" T axd

KN DFEQ)[L FG)I™" ¢l N HREY1 F(e]"”

+RL F Ok (N DF(p)

-¢[1-FQ)]" " a e(N-DF@Q)[1 -FE)]" @ @)

Al Fel e N DFEe1 P o} ax

k{1 N 2FGH[T R (v DRGRL R4t @ )

=K[L -F@)"" KN F@)L FE)" "

-K{1 AN 2FG}H1 R

=K[1 -FE)"" KN DF@E)1 FE)"’
-K[1 F@E)"" KN 2FG)1 Fe)"~

=K[1 -FE)]"" KF@EQ)1 Hq)" " KR F@E)"®

=K[1 FE)]"*[1 FG) Fg) 1 -
=0

Therefore'ECparaIIeI - ECYankee :IZ;: EQC) dq ;:(ﬁf( (‘:) d'; 0

This completes the proof of expected cost equivalence of the two auction models.
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Appendix 2

In the following, we provide examples of the bidder instructions. Thageaéntical across the
various treatments, but some numbers differed according to the specific treatment combination.
For example, in C1 the bid functios only used in a single computerized auction, whereas in
C100 and C100+ is used in 100 computerizedictions.

Computerized experiments
Instructions for the experiment for the parallel auction:
This is an experiment on decision making. The following instructions are simple, and if you
follow them carefully and make good decisions, you may earn a coalsielamount of money.
During the experiment your payoff will be in experimental Francs that will be converted into
Euro at the end of the experiment at the following rate:
16 Experimental Francs = 1 Euro

Payments will be made privately at the end ofdkperiment. If you have a question at
any time, please raise your hand and the monitor will answer it. We ask that you not talk with one
another for the duration of the experiment. On your desks you should have a checkout form, a

pen, and a copy of the caant form.

Your Experimental Task

In each round of todayodés session you will be
computerized competitors have been programmed to bid in a way that would maximize their
expected earnings when they bid agailikewise programmed competitors. Their bidding
strategies are only based on the cost draw, the distribution of costs, the fixed costs and the
number of competitors, which are public to all biddénise bids of the computerized bidders

have also been teymined, and they cannot be affected by your decisions today.

At the beginning of the experiment, you will receive a sheet of paper on which you will
see a list of 20 numbers. Each number is between 0 and 10 Experimental Francs (randomly drawn
with equalprobability) and has been rounded to one decimaleplBach number represents a
possible unit cost that you may have to produce a fictitious commodity. The process of selecting

possible unit costs is exactly the same for everyone.
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You can either win a contract on a small lot with 30 units of the commodity or on a large
lot for 70 units of the commodity. You can bid on both lots. The unit costs determine the total
cost for the small and large lot, which you can also find on the.dh@e¢ach of your 20 possible
cost values, you should write down a bid for the small lot and a bid for the large lot in the space
provided on the sheet of paper for the small and the largEhen, bids are connected with a line
to determine bids for Bpossible variable costs. We will call this your bid functiéfter all of
the participants have chosen their bids for each of the 20 possible cost values, the lists will be
collected.

The bids function will then be used 100 auctionswhere you competagainst the three
computerized agents in each round. The strategy of the computerized agents does not change
across the different auctions. However, in each of these auctions, your variable costs and also
those of your competitors will be randomly drafkom a uniform distribution between 0 and 10.

The bidder in each auction with the lowest bid for each lot wins this lot and pays the exact
amount of his or her bid. If a single bidder wins both lots, he will get the large lot and the second
best bidder orthe small lot will win this lot. In the case of a tie, the winner will be determined
randomly by the software. Winners in an auction will earn the difference between their bid and
their true costs. If you are not a winner, you will not earn any money.Wlbbe paid an
average of your winnings in the 100 auctions. After the auction you will participate in a brief
survey.
Before you submit the bid sheet, you should think about your bid strategy for

71 high and low cost draws, and

1 the small and the large lot

1 Would your strategy change, if a certain bid was only valid for 1 and not for 100 auction?
Results of both sessions will benwiled to you together with information about how much
money you have won. You will not learn information about other bidssimtiction, just whether

you won or you lost. Are there any questions?
Instructions for the experiments for the Yankee auction:

This is an experiment on decision making. The following instructions are simple, and if you

follow them carefully and make goal@cisions, you may earn a considerable amount of money.

51



During the experiment your payoff will be in experimental Francs that will be converted
into Euro at the end of the experiment at the following rate:
16 Experimental Francs = 1 Euro
Paymentswill be made privately at the end of the experiment. If you have a question at
any time, please raise your hand and the monitor will answer it. We ask that you not talk with one
another for the duration of the experiment. On your desks you should haeekawhform, a

pen, and a copy of the consent form.

Your Experimental Task

I n each round of todayds session you wil/ be
computerized competitors have been programmed to bid in a way that would matkiaiize
expected earnings when they bid against likewise programmed competitors. Their bidding
strategies are only based on the cost draw, the distribution of costs, the fixed costs and the
number of competitors, which are public to all biddénise bids ofthe computerized bidders

have also been determined, and they cannot be affected by your decisions today.

At the beginning of the experiment, you will receive a sheet of paper on which you will
see a list of 20 numbers. Each number is between 0 and 1frBeptal Francs (randomly drawn
with equal probability) and has been rounded to one decimad. (E@ach number represents a
possible unit cost that you may have to produce a fictitious commodity. The process of selecting
possible unit costs is exactly tekame for everyone.

You can either win a contract on a small lot with 30 units of the commodity or on a large
lot for 70 units of the commodity. You can submit a bid per unit that is valid for both lots. The
unit costs determine the total cost for the $raad large lot, which you can also find on the
sheet. For each of your 20 possible cost values, you should write down a bid in the space
provided on the sheet of paper that is valid for the small and the larg€hlet, bids are
connected with a line tdetermine bids for all possible variable costs. We will call this your bid
function. After all of the participants have chosen their bids for each of the possible cost values,
the lists will be collected.

The bids function will then be used 1100 auctions where you compete against the three

computerized agents in each round. The strategy of the computerized agents does not change
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across the different auctions. However, in each of these auctions, your variable costs and also
those of your competitors witle randomly drawn from a uniform distribution between 0 and 10.

The bidder in each auction with the lowest bid wins the large lot, the second best bidder the small
lot and pays the exact amount of his or her bid. In the case of a tie, the winner wik ipeiroied
randomly by the software. Winners in an auction will earn the difference between their bid and
their true costs. If you are not a winner, you will not earn any money. You will be paid an
average of your winnings in the 100 auctions. After thei@ugtou will participate in a brief
survey.

Before you submit the bid sheet, you should think about your bid strategy for

1 high and low cost draws,

1 Would your strategy change, if a certain bid was only valid for 1 and not for 100 auction?
Results will bee-mailed to you together with information about how much money you have won.
You will not learn information about other bids in the auction, just whether you won or you lost.
Are there any questions?

Instructions for the experiments for the single lotauction:
This is an experiment on decision making. The following instructions are simple, and if you
follow them carefully and make good decisions, you may earn a considerable amount of money.

During the experiment your payoff will be in experimeriedncs that will be converted
into Euro at the end of the experiment at the following rate:

16 Experimental Francs = 1 Euro

Payments will be made privately at the end of the experiment. If you have a question at
any time, please raise your hand and theitoowill answer it. We ask that you not talk with one
another for the duration of the experiment. On your desks you should have a checkout form, a

pen, and a copy of the consent form.

Your Experimental Task

I n each round of t odiliagyagainst threescempoterizeg @mpetitors! The b e
computerized competitors have been programmed to bid in a way that would maximize their
expected earnings when they bid against likewise programmed competitors. Their bidding

strategies are only based dmetcost draw, the distribution of costs, the fixed costs and the
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number of competitors, which are public to all biddéise bids of the computerized bidders
have also been determined, and they cannot be affected by your decisions today.

At the beginningof the experiment, you will receive a sheet of paper on which you will
see a list of 10 numbers. Each number is between 0 and 10 Experimental Francs (randomly drawn
with equal probability) and has been rounded to one decimad. f@ch number represents a
possible unit cost that you may have to produce a fictitious commodity. The process of selecting
possible unit costs is exactly the same for everyone.

You can either win the full amount of the commaodity or nothing. You can submit only a
bid per unit thais valid for the full amount. The unit costs determine the total cost fort, which
you can also find on the sheet. For each of your 10 possible cost values, you should write down a
bid in the space provided on the sh&éten, bids are connected with adito determine bids for
all possible variable costs. We will call this your bid functiéfter all of the participants have
chosen their bids for each of the possible cost values, the lists will be collected.

The bids function will then be used 180 aictions, where you compete against the three
computerized agents in each round. The strategy of the computerized agents does not change
across the different auctions. However, in each of these auctions, your variable costs and also
those of your competitomsill be randomly drawn from a uniform distribution between 0 and 10.

The bidder in each auction with the lowest bid wins the full amount, and pays the exact amount
of his or her bid. In the case of a tie, the winner will be determined randomly by tharsoft
Winners in an auction will earn the difference between their bid and their true costs. If you are
not a winner, you will not earn any money. You will be paid an average of your winnings in the
100 auctions. After the auction you will participate ibrgef survey.

Before you submit the bid sheet, you should think about your bid strategy for

1 high and low cost draws,

1 Would your strategy change, if a certain bid was only valid for 1 and not for 100 auction?
Results will be emailed to you together witimformation about how much money you have won.
You will not learn information about other bids in the auction, just whether you won or you lost.

Are there any questions?
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Human subject experiments
For the human subject experiments, only the instructions for the parallel auction are presented.
For the Yankee and the single lot auction, both, the auction and bidding rules, and the winner
determination are the same as within the computerized expesiment
Instructions for the experiment for the parallel auction:
This is an experiment on decision making. The following instructions are simple, and if you
follow them carefully and make good decisions, you may earn a considerable amount of money.
During theexperiment your payoff will be in experimental Francs that will be converted into
Euro at the end of the experiment at the following rate:
16 Experimental Francs = 1 Euro

Payments will be made privately at the end of the experiment. If you have a qaéstion
any time, please raise your hand and the monitor will answer it. We ask that you not talk with one
another for the duration of the experiment. On your desks you should have a checkout form, a

pen, and a copy of the consent form.

Your Experimental Task
In each round of todayo6s session you wil/ be
bidders will be determined randomly in each of 16 rounds from the pool of participants.

At the beginning of the experiment, you will receive a sheet of papaharhn you will
see a list of 10 numbers. Each number is between 0 and 10 Experimental Francs (randomly drawn
with equal probability) and has been rounded to one decimal place. Each number represents a
possible unit cost that you may have to produce aifiag8 commodity. The process of selecting
possible unit costs is exactly the same for everyone.

You can either win a contract on a small lot with 30 units of the commodity or on a large
lot for 70 units of the commodity. You can bid on both lots. The cwsts determine the total
cost for the small and large lot, which you can also find on the sheet. For each of your 10 possible
cost values, you should write down a bid for the small lot and a bid for the large lot in the space
provided on the sheet of papfor the small and the large Idthen, bids are connected with a line
to determine bids for all possible variable costs. We will call this your bid fundiiter. all of
the participants have chosen their bids for each of the 10 possible cost valueanypload the

sheet on a server. In the auctions, your variable costs and also those of your competitors will be
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randomly drawn from a uniform distribution between 0 and 10, and the computer determines the
bids based on the randomly drawn costs. Nextwill be randomly matched to three of the other
players in the room and the bids of all bidders will enter the auction. The bidder in each auction
with the lowest bid for each lot wins this lot and pays the exact amount of his or her bid. If a
single bidler wins both lots, he will get the large lot and the second best bidder on the small lot
will win this lot. In the case of a tie, the winner will be determined randomly by the software.
Winners in an auction will earn the difference between their bidttaeid true costs. If you are
not a winner, you will not earn any money. After each round you get the following feedback:

1 Your own cost draw,

1 Your bid for the small and the large lot according to your bid function,

1 The bids of your competitors of batbts, and

1 If you have won or not.
Additionally, the mean and all winning bids of each round will be shown aggregated on the
webpage. Please consider both the feedback of the previous round and the aggregated winning
bids.
Before you submit the bid sheeguwshould think about your bid strategy for

71 high and low cost draws, and

71 the small and the large lot.
Results of the whole session will bemailed to you together with information about how much
money you have won.

Are there any questions?
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Appendix 3

Scatter plots of the parallel auction
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Figure3: Scatter plot of bids and the equilibrium bid functionsHoon thelarge lot for the first (left) and the"7
auction (right) for the parallel auctiog=%0.7).
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Figure8: Satter plot of bids and the equilibrium bid functions &i00+on the large lot (left) and for thenall

lot (right) for the parallel auctiorg€0.9).

Scatter plots of the Yankee auction
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Figure9: Scatter plot of bids and the optimal bid functions in H auction 1 (left) auction 7 (right) for

different variable costs ithe Yankee auction.
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Figure10: Scatter plot of bids and the equilibrium bid functionsiifor the fir (left) and the ¥ auction (right)

for Yankee auction.
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Figurell: Scatter plot of bids and the equilibrium bid functions@drfor the Yankee auction
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Figure12: Scatter plot of bids and the equilibrium bid functionscfe.7 with C100 (left) andC100+ (right) for

the Yankee auction.
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Figure13: Scatter plot of bids and the equilibrium bid functionsgfe®.9 withC100 (left) andC100+ (right) for

the Yankee auction
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Scatter plots of the single lot auction

]
12 —| = Bid experiment . .
— - Bid equilibrium | JE 12 Bid experiment -
11 of 1 = = Bid equilibrium o s
10 10 ]
9 9
8 8
- ! s 7
m 6 o 6
5 5
4 4
3 3
2 2
14 14
07 07
rFr1rrr 17111 1r 1T 1T T T T T T T T T T T T T T T T T T T T T T T T T 1T T 711
QOO WLOWVOWVOLOWVOOLOLW O ONOWVOWOVOWOOWVOWOWVOWO
COr~ANNMOIFBOONNDBORDD O OO+ +~ANNMMNIIIOINOONNDGWDDDO
Variable costs Variable costs

Figure14: Scatter plot of bids and the equilibrium bid functionsiifor the first (left) and the"7auction (right)

for thesingle lot auction.
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Figure15: Scatter plot of bids and the equilibrium bid functions@drfor thesingle lotauction.
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Figure16: Scatter plot of bids and the equilibrium bid functions W@tt00 (left) andC100+ (right) for the single

lot auction.
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Appendix 4

Experiments with a Split Parameter of 0.9

In addition to our experiments witi=0.7 we tested in the laboratory the Yankee and the parallel
auction also witlg=0.9 for C100 and C100+ (s@&able9) to make sure that the high predictive
accuracy of the RNBNE function found for a splitgsf0.7 is robust against changes of the split
paramegr. We also wanted to test Propositions 2 and 4.

27 students took part in C100 and they ear
53 students played in C100 fge0.7 andg=0 . 9 wi t h an average payoff
students were testedWwig=0 . 9 wi t h an average payoff of 15.1
C100+ for both split points with an average p.

Treatment | Bid fct. | Subjects Information Split | Auction | No. of
reused format Bidders
C100.P9 100 Computer | Priordistribution 0.9 | Parallel |12
C100.Y9 100 Computer | Prior distribution 0.9 | Yankee |15
C100+.P9 | 100 Computer | Prior & RNBNE bid fct. | 0.9 | Parallel | 14
C100+.Y9 | 100 Computer | Prior & RNBNE bid fct. | 0.9 | Yankee | 16

Table9: Overview oftreatment combinations in the experiments with a split of g=0.9 rather than 0.7 in the main part

of the paper.

Result 1: In the parallel auction as q increases, bidding becomes more (less) aggressive for the
large lot (small lot), as theory predicts (Pragtion 2). Only for the small lot, where the
differences between the equilibrium bid function are small, the theoretical prediction does not
hold.

Support: For thelarge lot the intercept ing=0.9 is lower for C100 and C100+ and both
regression lines are close to the equilibrium bid function Tsdse 11). The equilibrium bid
function forg=0.9 is lower than fog=0.7 until high unit costs between 8 and 9 monetary units.
This is reflected in the regression lines of C100+, where both regressions intersect at a unit cost
of 8. In C100, the regression line fge0.7 is always above=0.9, i.e, bidders bid more
aggressive im=0.9 throughout.

For thesmall lotthe equilibrium bid function fog=0.9 is always below=0.7 by a small
number of 0.08. Also in C100+ the regression linegfe.9 is slightly belowg=0.7, in C100 it is
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the opposite. fie differences between the C100 and the C100+ regression line are less than one

monetary unit, however.

Small lot Large lot
V] b Std. error| Mult. | U b ( ui Std. Mult. | # bids/
(unit | (p-value) | R2 cost) error (p | R? bidders
cost) (p-value) | valug
RNBNE | 2.80 | 0.721 3.44 | 0.67

C100 2.16 | 0.753 | 0.009 0.972 | 2.90 | 0.729 0.011 0.952 | 240/12

(0.000) (0.000)
C100+ |2.85 |0.711|0.008 |0.971 | 3.42 |0.679 | 0.005 |0.985 | 280/14
(0.000) (0.000)

Table10: Regression coefficients for tieenpirical bid functions (w/o bidder ID) of the parallel auction with g=0.9

Large lot Small lot
MSE MSE MSE MSE MSE MSE MSE MSE
LOESS | RNBNE | Single Item | Constant | LOESS | RNBNE | Single Item | Constant
RNBNE Factor RNBNE Factor
C100 0.312 0.327 0.330 0.864 0.387 0.448 0.736 1.090
C100+ 0.163 0.235 0.244 0.860 0.095 0.102 0.350 0.981

Result 2: As q increases, bidding becomes more aggressive for our experimental environment
with fixed costs of 1 and uniformly distributed unit costs in the Yankee aughar is in line

with Proposition 4.

Support: The intercept ing=0.9 is below that ofg=0.7 (seeTable 6 and Table 11). The
equilibrium bid function ofg=0.7 is higher thamm=0.9 up to a unit cost of 9. The difference
between both regression lines in C100 is small. In C100+ the regression ¢ne.9fis always
below that ofg=0.7. Overall, the data from the lab confirms the theoretical prediction in

Proposition 4.
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U b ( u| Std. error| Multiple | MSE MSE MSE MSE Number
cost) b R2 LOESS | RNBNE | Single constant | of bids /
(p-value) item profit bidders
RNBNE | factor

RNBNE 2.82 | 0.735

C100 242 | 0786 |0.010 |0961 |0572 |06122 |0671 |0.966 | 300/15
(0.000)

C100+ 205 | 0699 |0007 |0970 |0.140 |0.160 |0236 |0.896 | 320/16
(0.000)

Table11: Regression coefficients for the empirical bid functions (w/o bidder ID) of the Yankee auctico=®ith

Corollary 1 states that if bidders submitted their RNBNE bid function in a Yankee
auction, then they always make a positive payoff if they win trgeléot, but they could also
make a loss in the small lot. Losses are more likely with high fixed costs. In our experiments
fixed costs were low, and the lowest payoff that we encountered was zero. Possible losses due to
high fixed costs are another pheremon to be analyzed in the future, but losses in experiments
are difficult as in most experiments it is considered unethical to have bidders pay a loss and

external validity of the experiments becomes an issue.

Result3: As g increases, the procuremensisodecrease, but the efficiency remains high.

Efficiency E Cost ratio C
C100+, parallelg=0.9 98.83% 52.76%
C100, parallelg=0.9 97.87% 51.71%
C100+, Yankeeg=0.9 99.50% 52.19%
C100, Yankeeg=0.9 97.98% 51.97%

Tablel2 Efficiency and auctionegEdPs costs for C100 a

Support: If you compareTable 8 and Table 12, you will see that the efficiency is hardly
changing. We did not find a significant difference in efficiency E and cost ratio C within the
same treatment combination between the parallel and the Yankee auction using a Wilcoxon rank
sum t est (TabeIB). However, Gisce the supplier with a cost advantage wins a larger

amount, whem is increasing, the procurement costs are reduced.
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C100+, Yankeeg=0.9 | C100, Yankeeg=0.9 | C100+, Single item| C100, Single item
C100, parallel, E: 0.1959 E: 0.0042
_ C: 0.9805 C: 0.0246
g=0.9
C100+, parallel, | E: 0.0112 E: 0.0037
4=0.9 C: 0.4175 C: 0.0177

Table13: Significance tests (Wilcoxon rank sum tests) for a difference on all pairs of auction formats and

treatments concerning efficien&yand cost ratio C.
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