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Abstract

A combinatorial auction allows bidders to submit bids on bundles
of objects and can be considered the pivotal example of a multiple
object auctions. They also constitute a paradigmatic problem in algo-
rithmic mechanism design. We provide an overview of both the com-
putational complexity and strategic complexity inherent in the design
of such auctions, and discuss how these challenges are addressed in
various combinatorial auction formats.

An auction can be defined as ”a market institution with an explicit set
of rules determining resource allocation and prices on the basis of bids from
the market participants” [1]. The competitive process serves to aggregate
the scattered information about bidders’ valuations and to dynamically set
a price. The auction format determines the rules governing when and how
a deal is closed [2]. Auctions are typically evaluated using two main crite-
ria, (allocative) efficiency and revenue. The first one measures whether the
objects end up with those bidders who value them most, while the latter
focuses on the expected selling price.

Multiple object auctions can be divided in those, where multiple units
of a single item are sold or where multiple items are sold. Of course also
combinations are possible, where large quantities (multiple units) of different
items get sold or bought, such as large quantities of different types of hard
disk drives. Combinatorial auctions are a means to buy or sell multiple
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items. They have found application in a variety of domains such as the
auctioning of spectrum licenses [3], truck load transportation [4], bus routes
[5], or industrial procurement [6]. Original designs have been proposed by
[7] for the allocation of airport time slots.

Combinatorial auctions address fundamental questions regarding efficiency
and prices in markets [8, 9]. These questions have been at the core of algorith-
mic mechanism design, a discipline at the intersection of Computer Science,
Economics, and Operations Research. In this article, we will focus on the
design of combinatorial auctions, but we will also address some related types
of auctions such as volume discount and multi-attribute auctions. We will
mainly look at the efficiency of auction formats as a main goal, as most of the
literature in this area does. The article provides a concise introduction and
is in parts based on publications such as [10], which we refer to for a more
detailed discussion. We will assume that the reader has a basic knowledge
about single-object auctions and the respective theory.

1 Complexity in Combinatorial Auctions

Combinatorial auctions have been discussed in the literature, as they allow
selling or buying a set of heterogeneous items to or from multiple bidders.
Bidders can specify bundle bids, i.e., a price is defined for a subset of the
items for auction [10]. The price is only valid for the entire set and the
set is indivisible. For example, in a combinatorial auction a bidder might
want to buy 10 units of item x and 20 units of item y for a bundle price
of $ 100, which might be more than the total of the prices for the items
x and y sold individually. We will refer to a bidding language as a set
of allowable bid types (e.g., bundle bids or bids on price and quantity) in
an auction. A bidding language allowing for bundle bids is also useful in
procurement markets with economies of scope, where suppliers have cost
complementarities due to reduced production or transportation costs for a set
of items. In this case, we will talk about either a combinatorial procurement
auction or a combinatorial reverse auction.

Combinatorial auctions have been intensively discussed for the sale of
spectrum licenses by the US Federal Communications Commission (FCC)
[11]. The FCC divides licenses into different regions. Bidders - usually large
telecom companies - often have super-additive preferences for licenses that
are adjacent to each other. This can have advantages in advertising a service
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to the end customer, but also in the infrastructure that needs to be set up.
In simultaneous auctions where no bundle bids are allowed, bidders incur the
risk that they only win a subset of items from a set of items that they are
interested in, and that they end up paying too much for the subset. This
is also called the exposure problem. These types of preferences can easily be
considered in combinatorial auctions. However, the design of combinatorial
auctions is such that several types of complexity can arise:

• The auctioneer faces computational complexity when determining an
optimal allocation. The winner determination problem in combinato-
rial auctions is an NP-hard problem [12]. In addition, the auctioneer
needs to derive ask prices in iterative auctions, which is typically a hard
computational problem as well.

• A bidder needs to determine his valuations for 2m − 1 bundles, where
m is the number of items. We will refer to this as valuation complexity.
Without restrictions, this would require to elicit 1023 valuations for an
auction with only 10 items of interest.

• Even if the bidders knew their valuations perfectly, they would still need
to decide how to respond during the auction. The issues relate to when
and how they reveal their preferences. We will describe this as strategic
complexity. Researchers have proposed different auction formats which
exhibit various degrees of strategic complexity for bidders [13].

• Finally, communication complexity describes the number of messages
that need to be exchanged between the auctioneer and the bidders
in order to determine the optimal allocation. It has been shown, that
the communication complexity in combinatorial auctions is exponential
[14].

We will only focus on computational (Section 2) and strategic complexity
(Section 3) in the following sections of this article. In Section 4, we will
discuss different auction formats that have been suggested in the literature,
and how they address these complexities.

2 Computational Complexity

First, we will concentrate on the winner determination problem in combinato-
rial auctions [15, 16, 17, 18]. It is a good example of the types of optimization
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Bids

Line Bids B1 B2 B3 B4

1 1000t grain in Berlin 1 0 1 1
2 800t grain in Munich 0 1 1 1
3 800t grain in Vienna 1 1 1 0
4 Bid price (in thousands) $ 150 $ 125 $ 300 $ 125

Table 1: Example with bundle bids

problems that one encounters in various multi-object auctions. The following
example with 4 bids and 3 items illustrates a simple procurement application
(see Table 1). The buying organization needs different quantities of grain in
different production sites. In this case, the buyer aggregates demand for mul-
tiple production sites, as suppliers might be able to provide better prices due
to reduced production and transportation costs. Suppliers bid on subsets of
the locations and each subset has a bundle price. In this article, we assume
suppliers to provide the entire quantity for an item or location. In case they
can provide subsets of the quantity, e.g., only 500t of grain for Berlin, this is
referred to as a multi-unit combinatorial auction.

Given the bidder valuations for all possible bundles, the efficient allocation
can be found by solving the Winner Determination Problem (WDP).
Let K = {1, . . . ,m} denote the set of items indexed by k and I = {1, . . . , n}
denote the set of bidders indexed by i with private valuations vi(S) ≥ 0 for
bundles S ⊆ K, and p as the price. This means, each bidder i has a valuation
function vi : 2K → R+

0 that attaches a value vi(S) to any bundle S ⊆ K. In
addition, we assume bidder values vi(S) to be independent and private (i.e.,
only known to the bidder), the bidders’ utility function to be quasi-linear
(i.e., the payoff of a bidder πi(S) = vi(S) − p) with free disposal (i.e., if
S ⊂ T then vi(S) ≤ vi(T )). There are other situations where valuations are
interdependent, such as the sale of a tract of land with an unknown amount
of oil underground, where the bidders may have different estimates of the
amount of oil based on privately conducted tests, but the final value is the
same for all bidders. We will focus on independent and private valuations in
this article.

The WDP in a forward auction can be formulated as a binary program
using the decision variables xi(S) which indicate whether the bid of the bidder
i for the bundle S belongs to the allocation:
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max
xi(S)

∑
S⊆K

∑
i∈I

xi(S)vi(S)

s.t. ∑
S⊆K

xi(S) ≤ 1 ∀i ∈ I∑
S:k∈S

∑
i∈I

xi(S) ≤ 1 ∀k ∈ K

xi(S) ∈ {0, 1} ∀i, S

(WDP)

The first set of constraints guarantees that any bidder can win at most
one bundle, which is only relevant for the XOR bidding language. Without
this constraint, bidders can win multiple bundles, which is referred to as an
OR bidding language.

The XOR language is used because it is fully expressive compared to
the OR language, i.e., a bidder can express values for all possible subsets of
items. Subadditive valuations, where a bundle is worth less than the sum
of individual items, cannot be described appropriately without an exposure
risk using the OR bidding language. The second set of constraints ensures
that each item is only allocated once. Very early, it has been shown that
the WDP (with an OR bidding language) is NP-hard by reducing it to the
weighted set packing problem [15].

Theorem 1. [15] The decision version of the WDP with an OR bidding
language is NP-complete, even if restricted to instances where every bid has
a value equal to 1, and every bidder bids only on subsets of size of at most 3.

The same holds for an XOR bidding language, where bidders only bid on
subsets of size of at most 2 [19]. The decision version of the WDP refers to the
WDP, in which the auctioneer only wants to know, if there is an allocation
with a revenue larger than a particular amount. Given those hardness re-
sults, one could try to approximate the WDP. Approximation algorithms are
polynomial time algorithms with a provable performance guarantee on the
deviation from the optimal solution. Unfortunately, it has been shown that
for OR and XOR bidding languages, there are no polynomial algorithms that
approximate the WDP within certain bounds. A comprehensive overview of
complexity results in this area is given in [18].

There are, however, tractable cases if we restrict bids or valuations in a
way that gives the bids a structure to allow for efficient solution methods.
For example, the goods are substitutes property (aka. substitutes condition)
leads to integral solutions of the LP-relaxation of the WDP.

5



Definition 1 (Substitutes condition [13]). Bidder i considers the objects in
K to be substitutes if for all A ∈ K and packages S and T not containing A,
such that S ⊂ T , vi(S ∪ {A})− vi(S) ≥ vi(T ∪ {A})− vi(T )

In other words, if items being sold are substitutes, the marginal value
of obtaining a particular object A is smaller if the set of objects T already
owned is larger than another set S. The substitutes condition would allow for
additive valuations but not for complements or super-additive valuations, and
will also play a role when determining ask prices in combinatorial auctions
in Section 4.

Theorem 2. [20] Let for all i ∈ I the bid values vi(S), S ⊆ K of the
WDP with an XOR bidding language satisfy the substitutes condition, then
the LP-relaxation of the WDP has an integral optimal solution.

A good overview of tractable cases of the WDP is provided in [21]. Un-
fortunately, the restrictions on tractable cases are so severe that auctioneers
cannot rely on them in most applications of combinatorial auctions. Indepen-
dent of this, extensive analyses of the empirical hardness of the WDP [22]
illustrate that satisfactory performance can be obtained for problem sizes
and structures occurring in practice. The problem sizes in many real-world
applications have shown to be tractable within acceptable time limits [6].

Apart from bundle bids, other types of advanced bidding languages and
respective auction formats have shown to be useful. Apart from traditional
multi-unit auctions which allow for the specification of a price for a particular
quantity, volume discount bids allow to specify supply curves, i.e., unit prices
for different quantities of an item sold. Supplier can express economies of
scale when bidding on very large quantities (e.g., $ 500/unit until 1000 units
and $ 450/unit for more than 1000 units). Also here, buyers need to consider
various business constraints when selecting such bids. For example, there
might be limits on the spend per bidder or group of bidders, and upper and
lower bounds on the number of winners. These side constraints as well as
limited capacity of suppliers turn the winner determination problem into a
hard computational problem [23, 24].

Multi-attribute auctions allow bids on price and qualitative attributes
such as delivery time or warranty. In contrast to request for quotes or tenders
as they are regularly used in procurement, the purchasing manager specifies
a scoring function that is used to evaluate bids. This enables competitive
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bidding with heterogeneous, but substitutable offers. Multi-attribute auc-
tions differ in the types of scoring rules or functions used, and in the type
of feedback that is provided to bidders. Depending on the type of bids sub-
mitted, and on the type of scoring function, the auctioneer faces different
optimization problems [25].

3 Strategic Complexity

In this section, we will talk about auction formats, which elicit bidders’
preferences to an extent that the optimal solution to the WDP, i.e., the
economic efficient outcome can be selected by the auctioneer. As outlined in
the first paragraph of this article, a central auction design goal is to obtain an
efficient allocation X∗ = (S∗1 , . . . , S

∗
n), where S∗i is bidder i’s optimal bundle.

Definition 2 (Allocative efficiency). Allocative efficiency is measured as the
ratio of the total valuation of the auction outcome X to the maximum possible
valuation of an allocation (i.e., the efficient allocation) X∗:

E(X) =

∑
i∈I

vi(
⋃

S⊆K:xi(S)=1 S)∑
i∈I

vi(
⋃

S⊆K:x∗i (S)=1 S)

Since typically in auctions the bidder valuations are not given and bid-
ders have incentives to lie about their true preferences, strategic complexity
is a concern in the design of combinatorial auctions. Strategic complexity
is concerned with the effort it takes for a bidder to determine his optimal
bidding strategies. In some auction formats bidders might not be willing to
reveal their true preferences and rather speculate, which is one of the main
sources of inefficiency in auctions.

Incentive compatibility and strategy proofness are properties that should
lead bidders to reveal their true private valuations to an extent that the auc-
tioneer can determine the efficient allocation, without the need for further
speculation about other bidders’ preferences. An auction is incentive compat-
ible, if truthful revelation is a Bayes Nash equilibrium. In other words, truth
revelation is optimal for a bidder, if and only if, all other bidders in a game
with uncertainty about the types of other bidders reveal their valuations
truthfully. An auction is strategy proof, if truth revelation is a dominant
strategy for bidders, i.e., it is the bidder’s best strategy independent of other
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bidders’ types and strategies. In these cases, the strategic complexity of an
auction is reduced to a minimum and speculation is not necessary.

Traditional single-object auction theory distinguishes at least four dif-
ferent types of auction formats: first-price sealed bid, Dutch, English, and
second-price sealed bid auctions [13]. The first-price sealed bid and the Dutch
auction are strategically equivalent, as are the English and the second-price
sealed bid. The second-price sealed bid auction or Vickrey auction has a
dominant strategy, and the same holds for a simple implementation of the
English auction, in which the auctioneer is replaced by an upward ticking
clock, and bidders cannot place jump bids, but only drop out at a certain
price level. This is often referred to as a Japanese or clock auction. The clock
auction can be described as iterative or ascending auction format, where a
bidder learns about the willingness-to-pay of other bidders during the course
of the auction. Efficiency in dominant strategies is a desirable property of
auction mechanisms. There is a generalization of the second-price sealed bid
auctions (aka. Vickrey-Clarke-Groves auction) to multiple-item auctions,
which maintains its dominant strategy property (see Section 4). It is not ob-
vious that a generalization of the clock auction or any other iterative auction
format has similar properties.

General equilibrium models have been developed in Economics to show
that in markets with multiple items, the Walrasian price mechanism also
known as tâtonnement, which uses item-level or linear prices actually yields
the efficient allocation [26] while communicating as few real variables as pos-
sible (see [27] and [28]). As a consequence, the First Welfare Theorem shows
Pareto-efficiency of allocations obtained at those equilibrium prices. The
tâtonnement works as follows: Prices are cried, and agents register how much
of each good they would like to offer or purchase. No transactions and no
production take place at disequilibrium prices. Then, prices are lowered for
goods with positive prices and excess supply, and prices are raised for goods
with excess demand until no agent wants to deviate from his allocation.

However, these results assume that all production sets and preferences
are convex. The results do not carry over to non-convex economies with
indivisible items, such as they often occur in combinatorial auctions. The
question is, whether a combinatorial auction mechanism can be fully efficient,
and, if so, what types of equilibrium prices are necessary. We will introduce
the notion of ”Competitive Equilibrium” for the following discussion.

Definition 3 (Competitive Equilibrium, CE [29]). Prices P, and allocation
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X∗ are in competitive equilibrium if allocation X∗ maximizes the payoff of
every bidder and the auctioneer revenue given prices P. The allocation X∗

is said to be supported by prices P in CE.

The first approach would be to use the same Walrasian price mechanism
and see, if it produced efficient outcomes in combinatorial auctions, where
indivisibilities are present. Unfortunately, without convexity assumptions
full efficiency cannot be achieved with simple linear competitive equilibrium
prices in a combinatorial auction with unrestricted bidder valuations. It
has been shown that a CE always exists in combinatorial auctions, but it
possibly requires non-linear and non-anonymous prices [30, 31]. Prices are
non-linear if the price of a bundle is not equal to the sum of prices of its
items, and prices are non-anonymous or personalized if prices for the same
item or bundle differ across bidders. This leads to the following classification
of CE prices:

1. linear anonymous prices P = {p(k)}

2. linear personalized prices P = {pi(k)}

3. non-linear anonymous prices P = {p(S)}

4. non-linear personalized prices P = {pi(S)}

Indeed, there have been proposals for ascending combinatorial auctions
with non-linear and personalized prices which have been shown to be fully
efficient if bidders follow a straightforward bidding strategy [32]. Such a
strategy assumes that bidders bid only on those bundles, which maximize
their payoff in each round. Unfortunately, straightforward bidding is only a
best response for bidders in pure ascending combinatorial auction formats,
if bidders’ valuations are restricted (see Section 4).

More generally, it is known shown that the only efficient mechanisms in
which honest revelation is a dominant strategy for each agent is the Vickrey-
Clarke-Groves (VCG) mechanism [33]. VCG mechanisms, however, exhibit
significant problems in practical applications [34, 35]. Among others, the
VCG mechanism can lead to low seller revenues, non-monotonicity of the
seller’s revenues in the set of bidders, and is susceptible to collusion. Apart
from this, all bidders would need to submit all their valuations for an ex-
ponential number of bundles, which is not practical for all but very small
auctions with only a few items.
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In summary, designing strategy-proof and practical combinatorial auction
formats turns out to be a formidable task. The VCG auction does not seem
practical in most applications and iterative forms of combinatorial auctions
are bound to non-linear and personalized competitive equilibrium prices for
full efficiency.

4 Combinatorial Auction Formats

In the following, we will provide an overview of well-known combinatorial
auction formats and discuss some of the concepts from the overview in the
previous section in more detail.

4.1 The Vickrey-Clarke-Groves Auction

Vickrey-Clarke-Groves (VCG) mechanisms describe a class of strategy-proof
economic mechanisms [36, 37], where sealed bids are submitted to the auc-
tioneer. The winners are also determined by the WDP. However, rather
than paying the bid prices, the winners pay a discounted price. This price is
calculated in the following manner.

pV CG
i = vi(X

∗)− [w(I)− w(I−i)]

Here pV CG
i describes the Vickrey price, while w(I) is the objective value

the WDP with the valuations of all bidders, and w(I−i) is the objective value
to the WDP with all bidders except the winning bidder i. If the auction is
modeled as a coalitional game, w(•) can also be referred to as the coalitional
value function, i.e., the outcome of the auction game with a certain set of
bidders. In a combinatorial auction, this means, a bidder needs to submit
bids on all possible bundles, a number which is exponential in the number of
items. Each winning bidder receives a Vickrey payment, which is the amount
that he has contributed to increasing the total value of the auctioneer.

Let’s take an example with two items x and y which are to be sold in a
combinatorial auction. The bids of bidder 1 and 2 are described in Table 2.
The total value will be maximized at $34, while selling {x} to bidder 1 and
{y} to bidder 2. Bidder 1 bids $20 for {x}, but he receives a Vickrey payment
of $34 - $29 = $5, since without his participation the total value would be
$29. In other words, the net payment or Vickerey price pV CG

1 bidder 1 has
to pay to the auctioneer is ($20 (bid price) - $5 (Vickrey payment) =) $15.
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Bids

Items {x} {y} {x,y}
Bidder 1 20* 11 33
Bidder 2 14 14* 29

Table 2: Bids submitted in a VCG auction

Bidder 2 bids $14 on y, but receives a Vickrey payment of $34 - $33 = $1,
because without his participation the total valuation of this auction would
be $33. Auctioneer revenue would then be $15 + $13 = $28 in this auction.

In this auction bidders have a dominant strategy of reporting their true
valuations bi(S) = vi(S) on all bundles S to the auctioneer, who then deter-
mines the allocation and respective Vickrey prices. As already introduced
in the previous section, the VCG design suffers from a number of practical
problems.

The decisive fault of the VCG is best understood if the auction is modeled
as a coalitional game [34]. (N,w) is the coalitional game derived from trade
between the seller and bidders. Let N denote the set of all bidders I plus
the auctioneer with i ∈ N , and M ⊆ N be a coalition of bidders with the
auctioneer. Let w(M) denote the coalitional value for a subset M , equal to
the objective value of the WDP with all bidders i ∈ M involved. A core
payoff vector Π, i.e., payoffs of the bidders in this auction, is then defined as
follows

Core(N,w) = {Π ≥ 0|
∑
i∈N

πi = w(N),
∑
i∈M

πi ≥ w(M) ∀M ⊂ N}

This means, there should be no coalition M ⊂ N , which can make a
counteroffer that leaves themselves and the seller at least as well off as the
currently winning coalition. Unfortunately, in the VCG auction there can be
outcomes which are not in the core. To see this, assume again a combinatorial
sales auction with three bidders and two items (see Table 3).

Bidder 1 bids b1(x) = $0, b1(y) = $2 and b1(x, y) = $2. Bidder 2 bids
b2(x) = $2, b2(y) = $0 and b2(x, y) = $2. Finally, bidder 3 only has a bid of
b1(x, y) =$2, but no valuation for the individual items. In this situation the
net payments of the winners (bidder 2 and 3) are zero, and bidder 3 could
find a solution with the auctioneer that makes both better off. It has been
shown that there is an equivalence between the core of the coalitional game
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Bids

Items {x} {y} {x,y}
Bidder 1 0 2 2
Bidder 2 2 0 2
Bidder 3 0 0 2

Table 3: Bids submitted in a VCG auction

and the competitive equilibrium for single-sided auctions [31]. Outcomes,
which are not in the core lead to a number of problems, such as low seller
revenues or non-monotonicity of the seller’s revenues in the set of bidders and
the amounts bid. To see this, just omit bidder 1 from the auction. Also, such
auction results are vulnerable to collusion by a coalition of losing bidders.
Therefore, it has been argued that the outcomes of combinatorial auctions
should be in the core [38].

The bidders are substitutes condition (BSC) is necessary and sufficient to
support VCG payments in competitive equilibrium [31]. A bidder’s payment
in the VCG mechanism is always less than or equal to the payment by a
bidder at any other CE.

Definition 4 (Bidders are Substitutes Condition, BSC). The BSC condition
requires

w(N)− w(N \M) ≥
∑
i∈M

[w(N)− w(N \ i)],∀M ⊆ N

In words, BSC holds where the incremental value of a subset of bidders
to the grand coalition is at least as great as the sum of the incremental
contributions of each of its members. When at least one bidder has a non-
substitutes valuation an ascending CA cannot implement the VCG outcome
[39].

4.2 Non-Linear Personalized Price Auctions

In this section, we will discuss relevant theory with respect to ascending
combinatorial auctions using non-linear and personalized prices (NLPPAs).
We have seen that the WDP is a non-convex optimization problem. By
adding constraints for each set partition of items and each bidder to the WDP
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the formulation can be strengthened, so that the integrality constraints on
all variables can be omitted but the solution is still always integral [31, 39].
Such a formulation describes every feasible solution to an integer problem,
and is solvable with linear programming. We will refer to this formulation
as NLPPA WDP.

max
∑

i∈I
∑

S⊆K vi(S)xi(S)
s.t.

xi(S) =
∑

X:xi=S δX ∀i ∈ I,∀S ⊆ K (pi(S))∑
S⊆K xi(S) ≤ 1 ∀i ∈ I (πi)∑

X∈Γ δX = 1 (πs)
0 ≤ xi(S) ∀S ⊆ K,∀i ∈ I

0 ≤ δX ∀X ∈ Γ

(NLPPA WDP)

Personalized non-linear CE prices can now be derived from the dual of
the NLPPA WDP. In the first side constraint, xi(S) is equal to the sum of
weights δX over all allocations X where bidder i gets bundle S. The dual
variables of this constraint are the personalized prices pi(S). The second side
constraint makes sure that each bidder i receives at most one bundle, and
the dual variable πi describes bidder i’s payoff. Finally, the total weight of
all selected allocations X ∈ Γ equals 1, such that only one allocation can
be selected. Here, Γ describes the set of all possible allocations. The dual
variable (πs) for this side constraint describes the seller’s payoff.

From duality theory follows that the complementary slackness conditions
must hold in the case of optimality. This is equivalent to the CE, where
every buyer receives a bundle out of his demand set or demand correspon-
dence Di(P), i.e., the bundles maximizing his payoff at the prices, and the
auctioneer selects the revenue maximizing allocation at these prices.

Definition 5 (Demand Set). The demand set Di(P) of a bidder i includes
all bundles which maximize a bidder’s payoff πi at the given prices P:

Di(P) = {S : πi(S,P) ≥ max
T⊆K

πi(T,P), πi(S,P) ≥ 0, S ⊆ K}

Complementary slackness provides us with an optimality condition, which
also serves as a termination rule for NLPPAs. If bidders follow the straight-
forward strategy then terminating the auction when each active bidder re-
ceives a bundle in his demand set will result in the efficient outcome. Note
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that a demand set can include the empty bundle. Additionally, the starting
prices must represent a feasible dual solution. A trivial solution is to use zero
prices for all bundles.

Although such non-linear personalized prices always exist, the NLPPA
WDP is huge since one must enumerate all possible feasible coalitions. Nev-
ertheless, it has provided a guideline to a number of practical auction designs
using non-linear personalized prices. Individual NLPPA formats discussed in
the following such as the Ascending Proxy Auction, iBundle, and the dVSV
auction have different rules for determining the prices provided to the bidders
and for determining how bidders submit new bids based on these announced
prices.

iBundle [40] calculates a provisional revenue maximizing allocation at
the end of every round and increases the prices based on the bids of non-
winning bidders. Three different versions of iBundle have been suggested [40]:
iBundle(2) with anonymous prices, iBundle(3) with personalized prices, and
iBundle(d) wich starts with anonymous prices and switches to personalized
prices for agents which submit bids for disjoint bundles. The Ascending
Proxy Auction [32] is similar to iBundle(3), but the use of proxy agents is
mandatory, which essentially leads to a sealed-bid auction format.

The dVSV auction [39] design differs from iBundle in that it does not
compute a provisional allocation in every round but increases prices for one
minimally undersupplied set of bidders. A set of bidders is minimally under-
supplied if each bidder in this set receives a bundle from his demand set, and
removing only one of the bidders from the set forfeits this property. Similar
to iBundle(3), it maintains non-linear personalized prices and increases the
prices for all agents in a minimally undersupplied set based on their bids of
the last round. While the Ascending Proxy Auction can be interpreted as a
subgradient algorithm, the dVSV auction can be interpreted as a primal-dual
algorithm for the NLPPA WDP [39].

Even though the BSC condition is sufficient for VCG prices to be sup-
ported in CE, the slightly stronger bidder submodularity condition (BSM)
is required for a pure ascending combinatorial auction to implement VCG
payments [39].

Definition 6 (Bidder Submodularity Condition, BSM). BSM requires that
for all M ⊆M ′ ⊆ N and all i ∈ N there is

w(M ∪ {i})− w(M) ≥ w(M ′ ∪ {i})− w(M ′)
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Here bidders are more valuable, when added to a smaller coalition. Un-
der BSM the NLPPAs yield VCG payments and straightforward bidding is
an ex-post equilibrium. An ex-post equilibrium is stronger than a Bayes-
Nash equilibrium, but weaker than a dominant strategy equilibrium. It does
not require bidders to speculate about other bidders’ types, but requires as-
sumptions about their strategies. When the BSM condition does not hold,
the property breaks down and a straightforward strategy is likely to lead a
bidder to pay more than the VCG price for the winning bundle, and bidders
have an incentive to shade their bids and deviate from straightforward bid-
ding. In case of non-straightforward bidding the outcome of NLPPAs can
deviate significantly from the efficient solution [41].

The restriction to BSM valuations is mainly due the definition of as-
cending auctions, such that prices can only increase and no payments from
the auctioneer are allowed. The Credit-Debit auction is an extension to
the dVSV design which achieves the VCG outcome for general valuations
by determining payments or discounts from the auctioneer to the bidders at
the end. Similarly, iBEA is described as an extension of iBundle. Both ap-
proaches are based on universal competitive equilibrium (UCE) prices, which
are CE prices for the main economy as well as for every marginal economy,
where a single buyer is excluded [42]. These auctions terminate as soon
as UCE prices are reached and VCG payments are determined as one-time
discounts dynamically during the auction. Truthful bidding is an ex-post
equilibrium in the Credit-Debit auction and iBEA. The auctions are an im-
portant contribution to the literature, because they describe fully efficient
iterative combinatorial auctions where straightforward bidding is an ex-post
equilibrium for general valuations. However, they share a central problem of
the VCG auction: if buyer submodularity does not hold, the outcomes might
not be in the core.

4.3 Linear Price Auctions

In many applications of ICAs, linear and anonymous ask prices are essential.
For example, day-ahead markets for electricity sacrifice efficiency for the sake
of having linear prices [43]. Also, the main auction formats, which have been
tested for selling spectrum in the US used linear ask prices [44]. Simple
examples illustrate that linear anonymous CE prices do not exist for general
valuations. It has been shown that the goods are substitutes property is a
sufficient condition for the existence of the exact linear CE prices [20], as the
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LP-relaxation of the WDP is integral (see Section 2) and dual variables can be
interpreted as prices. The substitutes condition is, however, very restrictive
and not satisfied in most combinatorial auctions. Inspite of these negative
results, some combinatorial auction designs with linear prices achieved high
levels of efficiency in the lab.

The CCA (Combinatorial Clock Auction) [45] utilizes anonymous linear
ask prices called item clock prices. In each round bidders express the quanti-
ties desired on the bundles at the current prices. As long as demand exceeds
supply for at least one item (each item is counted only once for each bidder)
the price clock “ticks” upwards for those items (the item prices are increased
by a fixed price increment), and the auction moves on to the next round.
If there is no excess demand and no excess supply, the items are allocated
corresponding to the last round bids and the auction terminates. If there
is no excess demand but there is excess supply (all active bidders on some
item did not resubmit their bids in the last round), the auctioneer solves
the winner determination problem considering all bids submitted during the
auction runtime. If the computed allocation does not displace any bids from
the last round, the auction terminates with this allocation, otherwise the
prices of the respective items are increased and the auction continues. Note
that due to the winner determination the final payments can deviate from
the ask prices.

The RAD (Resource Allocation Design) proposed in [46] uses anony-
mous linear ask prices. However, instead of increasing the prices in case of
overdemand, the auction lets the bidders submit priced bids and calculates
so called pseudo-dual prices based on a restricted dual of the LP relaxation of
the WDP [7]. The dual price of each item measures the cost of not awarding
the item to whom it has been allocated in the last round. In each round
the losing bidders have to bid more than the sum of ask prices for a desired
bundle plus a fixed minimum increment. RAD suggests an OR bidding lan-
guage and only winning bids remain in the auction in its original design. The
ALPS (Approximate Linear PriceS) design [47] is also based on the ideas
in [7], but improves termination rules and the ask price calculation to better
balance prices across items and have the auction avoid cycles. Note that in
RAD and ALPS prices can also decrease if the competition shifts to different
items.

HPB (Hierarchical Package Bidding) imposes a hierarchical structure of
allowed package bids. This hierarchy and an OR bidding language reduce the
winner determination problem to a computationally simple problem that can
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be solved in linear time [15]. If the hierarchy meets the bidders preferences,
the auction is likely to achieve efficient outcomes, and reduces the strate-
gic complexity for bidders. HPB provides a simple and transparent pricing
mechanism [48]. It uses a recursive algorithm to determine new ask prices
which starts with the highest bids on every single item as a lower bound,
adding a tax if the next level package received a bid higher than the sum of
the single item bids contained in the package. The difference is distributed
uniformly upon the respective item prices. The algorithm ends evaluating
the package(s) of the top level, resulting in new ask prices for each item.

A few of other combinatorial auction designs have been suggested, which
use linear and non-linear prices. For example, in the Clock-Proxy auction a
clock auction is followed by a best-and-final Ascending Proxy Auction [49].
The approach combines the simple and transparent price discovery of the
clock auction with the efficiency of the Ascending Proxy Auction. PAUSE
combines the simultaneous multi-round auction with bidding on bundles in
later stages. Here, the burden of evaluating a combinatorial bid is transferred
to the bidder [50]. Also alternative ways of pricing and bidder support have
shown promising results [51].

Interestingly, experimental research has shown that iterative auction de-
signs with linear prices achieved very high levels of efficiency, even for auc-
tions with up to 18 items [44, 48, 52]. While linear competitive equilibrium
prices do not always exist, linear ask prices used in the combinatorial clock
auction [45], HPB [48], or ALPS [47] have shown to be a good guideline to
bidders in finding the efficient solution, even though no formal equilibrium
analysis is available for any of these auction formats.

5 Conclusions

Many theoretical results on combinatorial auctions are negative in the sense
that it seems quite unlikely that practical applications would satisfy the as-
sumptions, which would lead to efficiency with a strong game-theoretical
solution concept. Nevertheless, experimental results have yielded very high
levels of efficiency in the lab. These results suggest that even if full effi-
ciency is not always possible, combinatorial auction designs can achieve very
high levels of efficiency, higher than what would be possible in simultaneous
or sequential auctions in the presence of complementarities. The results of
this research can have significant impact on the design and the efficiency of
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real-world markets. Further development of practical combinatorial auction
designs will probably remain an active and rewarding area of both theoretical,
experimental, and applied research for the foreseeable future.
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