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Abstract In IT Service Delivery, alignment of service 
infrastructures to continuously changing business requirements 
is a primary cost driver, all the more as most severe service 
disruptions can be attributed to poor change impact and risk 
assessment.  An IT service, defined as a means to provide value to 
a consumer, may be realized by a network of shared application 
and other resources that are invoked in the context of business 
processes. In the spirit of Service-Oriented Architecture (SOA) 
we consider each application or resource as a service. Changing 
services or service definitions in such an environment includes 
exceptionally high risk and complexity, as various business 
processes might depend on a service. In this paper we propose a 
model for analyzing the business impact of operational risks 
resulting from change related service downtimes of uncertain 
duration. The proposed solution takes into account the network 
of dependencies between services where services may or may not 
be realized through business processes. Based on the analytical 
model, we derive decision models in terms of deterministic and 
probabilistic mathematical programming formulations to 
schedule single or multiple correlated changes efficiently. 
Preliminary experiments are described to illustrate the efficiency 
of the proposed models. Using these decisions models, 
organizations can schedule service changes with the lowest 
expected impact on the business. 

Change Management, Service Transition Management, 
Change Scheduling, Service-oriented Architectures, Business 
Impact Analysis, Business-Driven IT Management  

I.  INTRODUCTION 
In recent years, IT service management (ITSM) has 

received much attention as enterprises understand that 
operating their IT infrastructure is a large part of their overall 
operating costs. Today’s businesses operate in dynamic 
environments with the need to continuously adapt to changing 
customer expectations, market trends, technical enhancements 
or changes to legislation. These changes entail changes to IT 
services and business processes to drive alignment of IT with 
business requirements. According to current surveys 
uncontrolled changes including flawed risk and impact analysis 
cause more than 80% of business-critical service disruptions 
[1].  

Publicly available best-practices ITSM frameworks such as 
the IT infrastructure Library (ITIL) define reference change 
management processes including several activities like change 
initiation, where a Request for Change (RFC) describing the 

required change is submitted, change filtering, priority 
allocation, categorization, planning, testing, fulfillment and 
review. Major changes must be analyzed and approved, from a 
technical as well as from a business point of view before they 
get scheduled [2]. We focus on the impact of changes on the 
business and on how to schedule changes with minimum 
associated risks and costs. 

As modern IT service infrastructures are continuously 
transformed towards virtualized resource pools and Service-
Oriented Architectures, applications and infrastructure 
resources can be viewed as services shared in a larger value 
network and invoked in the context of various business 
processes. Services can be described using standards such as 
the Web Services Description Language (WSDL), describing 
for example the service interfaces of services offered as Web 
services, and invoked via a suitable Internet protocol. We 
distinguish between different types of services. An atomic 
service in our definition is a service with a well-defined 
transaction boundary that provides a simple single operation 
(e.g. generate IP or assignServerName). A business process 
executes by invoking atomic services, other services that may 
be composed of atomic services (e.g. short running automated 
workflows) or other business processes. Each service is 
executed on an IT resource. In principle, we can consider an IT 
resource as a service as well. We exclude the details of the 
implications of this approach for a later time.  

Considering the number of business processes in an 
enterprise and the complexity of the dependency network of 
processes to invoked services, changes in this kind of 
environment may pose significant risks due to the multitude of 
interdependencies und uncertainties to manage, and the impact 
of failures is likely to be business-critical as many business 
processes might depend on this service. Therefore, efficient 
and reliable change management aiming at continuous service 
delivery by automatically considering the dependency chains is 
essential. 

Consider the following example, illustrated in Fig. 1, which 
we found in many companies: a business process application 
runs several customer relationship management (CRM) 
processes, from lead generation to sales order generation 
(CRM covers concepts to manage relationships with customers, 
including the capture, storage and analysis of customer, vendor, 
partner, and internal process information). The application 
itself is hosted on one or more physical resources and has 



dependencies to other applications (or services) and 
infrastructural components. Estimating the impact of an 
application failure is – without detailed knowledge of the 
dependency chains - a fairly manageable problem. The left 
scenario shows a pictorial of a Tivoli CCMDB discovery [3], 
where application A is connected to application B. Downtime 
of Application B means an impact on Application A. This view 
however is not sufficient as an organization managing the 
business process application A will alert business users that the 
CRM application will be unavailable, which could for example 
lead to unfulfilled sales orders. The right pictorial illustrates the 
more realistic scenario, where A is hosting two processes, e.g. 
lead generation and sales order generation. The actual 
downtime of application B may only lead to unavailability of 
lead generation but not sales order generation (which in the 
CRM context is a much lower risk).  Furthermore, based on the 
fact that the affected lead generation may be a long-running 
business process, one can imagine that only a subset of all 
running instances will be affected depending on the state of 
each instance. The longer the duration of downtime for a given 
service or application or network resource that is used by a 
business process is, the more likely it is to experience business 
value attrition due to SLA violations and associated penalties. 
We believe that change scheduling should take this level of 
detail into account to minimize the risk of downtime for 
business value generating services. 

How many instances of a particular process are affected 
highly depends on the business process demand while fulfilling 
the change. Process demand, however, is generally not known 
a-priori but has to be approximated by means of forecasting 
techniques.  

The focus of this paper is to determine and minimize 
change related risk in Service-Oriented Business environments 
as illustrated above by introducing decisions models allowing 
organizations for scheduling service changes with the lowest 
expected financial loss, or cost. We propose models for 
analyzing the business impact of change related service 
downtimes of uncertain length, as the impact on dependent, 
active business processes is analyzed and transferred into 
financial losses. The proposed solution automatically considers 
the dependency chain from a business process down to affected 
resources, applications or other services realized by business 
processes. Based on these analytical models, we derive 
decision models in terms of deterministic and probabilistic 
mathematical programming formulations allowing for 
scheduling single or multiple correlated changes efficiently. 
First Experiments and sensitivity analyses are described to 
illustrate the efficiency of the proposed models.  

 

Figure 1.  Business Process Application Dependencies 

The outline of this paper is structured as follows: in Section 
2 we review related work in this field. In Sections 3 we discuss 
in detail techniques on how to estimate and quantify 
operational risks of service transitions. Subsequently, in 
Section 4 we introduce a basic deterministic decision model 
and probabilistic extensions to determine efficient change 
schedules in different business scenarios. We further provide 
model extensions to take into account change correlations and 
other sources of risks like change deadline or change window 
violation risks. In Section 5, we describe the setup of our 
preliminary experiments conducted to make first efficiency 
statements of the models and present our experimental 
outcomes. Finally, in Section 6, we summarize and conclude. 

II. RELATED WORK 
In this section we review previous work and guidelines in 

IT change risk analysis and management related to the work 
described in this paper. 

The definition of risk itself varies broadly according to the 
specific domain one looks at. The most general definition of 
risk is ‘uncertainty of outcome’ [4]. In our case, the outcome is 
change related cost materialized as financial loss. To analyze 
risk impact, i.e., resulting costs for the business, we draw on a 
two-stage approach; first scanning for possible outcomes and 
quantifying this outcomes in terms of monetary consequences, 
and second, weighting these outcomes by their probabilities. 
This approach is generally known as probabilistic risk analysis 
as introduced in [5]. 

In IT change management, most approaches found allow 
for risk analyses that are not directly transferable to business or 
financial impact or provide general guidance to change 
management considering associated risk.  

Publicly available best-practices ITSM frameworks and 
standards such as the IT infrastructure Library (ITIL) [6] or 
Control Objectives for Information, and related Technology 
(COBIT) [7] provide guidance on how to perform service 
management tasks and are validated across a diverse set of 
environments and situations. As of the importance of managing 
service changes or transitions efficiently, particular with 
respect to associated risks, this topic has recently become a 
mayor focus herein. For example, the Office of Governmental 
Commerce (OGC) dedicated in the newly published ITIL 
version 3.0 (May 2007) an own book on how to manage 
service transitions efficiently, with special regards to associated 
risks [4]. However, ITIL and related best-practices frameworks 
provide high-level guidance for performing a service 
management task like managing a change, but do not provide 
guidance on how to do the actual change management 
implementation, e.g., on how to determine and quantify change 
related risks and costs in a particular business environment.  

Some commercial tools and dashboard applications are 
available that claim to assist in managing changes, although not 
enough details are available that can be used to evaluate and 
compare the involved methods [8, 9, 10, 11].  

Some papers have presented approaches to qualitatively 
evaluate risk, for example [12], but do not provide quantitative 
risk analysis with regard to business impact.  



Keller and Hellerstein present the CHAnge Management 
with Planning and Scheduling (CHAMPS) system to automate 
steps in the execution of changes. The authors propose decision 
models to solve different scheduling problems like maximizing 
the number of changes, minimizing overall downtime, or 
minimizing the costs associated with change related downtime. 
The authors assume knowledge of the cost functions for 
performing a change job at time t, while we focus on how to 
derive cost functions from change related downtime risks to the 
business processes [13].  

Rebouças, Sauvé, Moura, Bartolini and Trastour address 
the problem of scheduling changes in a way to minimize the 
financial loss imposed by SLA violations when the 
implementation of changes exceed change deadlines. The 
authors explicitly consider uncertainty in change fulfillment 
durations. [14]. 

Our work serves to filling the gap in work addressing the 
formal quantification of service change risk to active and 
depending business processes, enabling the scheduling of 
service changes with minimum total expected costs.  

III. SERVICE TRANSISTIONS AND ASSOCIATED RISK ON 
BUSINESS PROCESSES  

The goal of service transition management is to plan and 
control service changes and deploying changed service releases 
into the production environment successfully, i.e., with 
minimum negative impact to the business. We assume that a 
service is down during the change fulfillment period. As 
described in Section 1, service transition in Service-Oriented 
Architectures is coupled with exceptionally high risk and 
complexity, as there are multiple interdependencies und 
uncertainties and many business processes might depend on a 
service. To estimate the risk of services changes to the business 
(processes), a clear picture and a formal description of the 
business process and service dependency structure is 
mandatory. Existing models like the Web Services Business 
Process Execution Language (WS-BPEL) or Business Process 
Modeling Language (BPMN) can be used to derive the 
dependency structure, but address many aspects not of 
immediate interest here. Although there is a clear mapping onto  
SOA models, we will now introduce a notation that is used 
throughout this paper to formalize the process and service 
dependencies relevant for our decision making. 

Let I be the total number of different types of business 
processes i (i=1, …, I), requested stochastically following a 
demand distribution or profile Di. In other words, there are I 
different business process definitions existing, instantiated on 
request. A second layer service definition j (j=1, …, J) 
describes an aggregated or composite service on the layer 
below the business process layer (i.e., the first layer). This 
layer represents typically automated workflows that merely 
string together several atomic services. Furthermore, an 
assignment variable uij indicates that a business process i 
implements service j in step uij. Steps of a business process i 
are enumerated by ni (ni=1, … Nj). We set uij=0 if a business 
process i definition does not implement service j. In the same 
manner we model the dependencies of lower-level services. 
We enumerate the service descriptions on the next lower 

aggregation level by k (k=1, …, K) and assign these third-level 
services by setting ujk correspondingly to the step nj (nj=1, …  
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Figure 2.  Three Layer Service Dependency Model 

Nj) in the j service flow definition. Likewise, we set ujk=0 if k is 
not implemented by j. Fig. 2 illustrates the resulting 
dependency structure.  

Using this dependency model, one can automatically derive 
which higher-lever services and business processes are affected 
by a specific service downtime.  

However, to estimate the business impact of a change, 
additional information is required, like how many instances of 
business processes are affected, and how many service level 
agreements of these processes are expected to be violated.  

The amount of affected business process instances depends 
on the business process demand at and before the time a 
change is fulfilled. Business forecasting techniques are used to 
estimate the demand for a certain business process during a 
particular period of time. With Di as a business process i’s 
demand distribution profile (i.e., the demand distributions 
profile of all considered time slots t, Dit, demand forecasts dit 
are possible for a certain time slot t (for example by setting dit 
to Dit’s mean value).  

For the sake of computational efficiency, we divide time 
into small discrete time slots, wherein we assume a fixed level 
demand profile. The costs of business process disruptions or 
delays are defined in SLAs. A SLA typically includes a 
process’ maximum response or execution time Li and the 
definition of (monetary) penalties pi to pay on SLA violations. 
Depending on a SLA, penalties are paid per maximum 
response time violation, if the number of service level 
violations during a given time span exceeds a defined threshold 
value, or other individual agreements. Simply multiplying the 
number of process instances expected during the duration of a 
change with the penalties would overestimate change related 
costs, as not all running business process instances will be 
disrupted or delayed. For example, business process instances 
which already passed the step implementing the service that is 
going to be changed will not be affected at all, nor is there an 
impact on running processes instances which will execute the 
changed service after the change is fulfilled and the service is 
again available. Furthermore, business processes and services 
might be queued. If the time buffer, i.e., the difference between 
the maximum execution time and the normal or usual 



execution time is large enough, there is a chance to still execute 
affected processes instances in a SLA compliant way. 

In the following, a procedure is described to estimate the 
amount of SLA violations if queuing is not possible.  
Furthermore we extend our discussion by including queuing 
processes and services. We start out with a deterministic model 
by assuming complete knowledge of process demand per time 
slot and change related downtime followed by introducing a 
probabilistic model to account for uncertainty in both demand 
and service downtime.  

A. SLA violations without queuing 
Consider a request for change (RFC) for service j, where j 

will be unavailable for a duration Δtj
down after the change start 

time tj. The task is to estimate dijt
p, the number of SLA 

violations of dependent business process instances. Given this 
number for each affected business process, the estimated costs 
of changing j in t, cjt are 

                                      p
ijt

i
ijt dpc ∑=                                  (1) 

To predict dijt 
p we proceed as follows: all service instances 

executing j during time period [tj; tj+Δtj
down]) are disrupted. 

From a planning perspective, we assume equal arrival rates of 
business process requests (principle of indifference) as there is 
only aggregated knowledge of service demand per time slot 
available. This assumption is tight as long as the forecasting 
time periods are kept small. Of interest is the demand for a 
business process i not only during the change downtime Δtj

down 
but also before tj as running process instances starting before tj 
might reach j during [tj, tj+Δtj

down]. Depending on the step in 
which a business process i implements service j, business 
process instances starting after tj-Li might be affected if j is 
executed in the last process step (uij =Ni). If j is executed in the 
next to last step (uij = Ni-1), only process instances starting after 
tj - Li + LN(i) are affected, etc. On the other side, if i implements 
j in step Ni and the total execution duration of preceding 
process steps exceeds j’s downtime, instances starting during 
[tj, tj+Δtj

down] are not affected by the current change. To 
approximate the demand for a business processes i with j 
execution overlapping with [tj, tj+Δtj

down], dijt
p, we therefore 

consider business processes demand during  
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j
'
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where j’ is a service executed in a process i steps preceding j’s 
implementation step and j’’ is a service executed in a step after 
j’s implementation step.  

An alternative, more coarse-grained way of approximating 
dijt 

p, with no further knowledge of the concrete step a process i 
implements a service j is described in the following: assuming 
an equal demand distribution around tj, the percentage of i 
business process instances executing j during in [tj, tj+Δtj

down] is 
(on average)  

i

j

L
L                                            (3) 

where Lj is the execution duration of j, and Li is the overall 
process execution duration. The probability that a running 
process instance (executing a step preceding uij) will reach j in 
[t;, tj+Δtj

down] is  

i

down
j

L
tΔ                                       (4) 

Therewith, the expected total costs of SLA violations 
caused by changing j in tj are 

i
down

jijt
i

j
down

j

ui
jt ptd

L
Lt

c
ij

))((
0:

Δ
+Δ

= ∑
>

            (5) 

B. SLA violations with queuing 
We will now look at the estimated costs of changing j in 

time slot t if queuing (or buffering) is allowed. Here, not all 
business process instances executing j overlapping with [tj; 
tj+Δtj

down] are disrupted as instances can re-execute j after the 
change is fulfilled. If a SLA is violated depends on a process’ 
time buffer bi (bi =  Li,max – Li), where Li,max is the maximum 
execution time of a process, and Li is the normal or usual 
execution time of a process. Again, the probability of a process 
instance currently executing j is shown in equation (3). If bi ≤ 
Δtj

down, all considered process i instances will exceed the 
maximum response time. If bi > Δtj

down + Lj, no service instance 
is disrupted. If Δtj

down < bi < Δtj
down + Lj,  

there is a change of a rollback and re-execution without SLA 
violation if the time buffer exceeds the amount of time already 
spend executing j before tj plus j’s downtime Δtj

down . This 
probability is shown in equation (6)  
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The probability that a running process instance (executing 
preceding steps) will reach j in [tj; tj+Δtj

down] is shown in (4). If 
bi > Δtj

down, all services are delivered successfully. If bi < 
Δtj

down, the average rate of successful delivered business 
process instances is    

)()( down
j
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L
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Δ

Δ                              (7) 

C. Non-Linear Business Processes and Service Flows 
The estimation of change related penalties as introduced in 

the previous section assumes linear business processes and 
service flows with a predetermined sequence of service 
executions. In practice, business processes might take different 



branches or service flow paths based on certain conditions. One 
branch might include a service to be changed while others do 
not. Hence, business process forecasting ignoring such 
conditional branches overestimates the number of SLA 
violations and costs. A finer-grained demand forecast is 
required for each possible branch. This forecast can be derived 
by analyzing the history of the different executed branches in 
the same way the total demand for linear processes is derived 
by business forecasting methods. We model each branch as 
own business process as shown in Fig. 3.  

Using this statistical means, one can model forked business 
processes. Processes including iterative sequences like loops 
can be demodulated in the same manner, by defining each 
possible flow as an own process and by assigning probabilities 
derived from statistical analyses of log data. 

IV. CHANGE SCHEDULING DECISION MODELS 
We will first introduce a basic change scheduling decision 

model for shared services underlying a number of restrictive 
assumptions like perfect knowledge of business process 
demand per time slot and deterministic change related 
downtimes of services. Afterwards, we will propose model 
variants considering uncertainty in business process demand 
and stochastic service downtime. Based on these model 
formulations, a couple of extensions are introduced to consider 
other types of operational risks and costs associated with 
service transitions. Furthermore, we address the problem of 
handling correlated changes. 

A.  Basic Deterministic Model 
We will now introduce a deterministic mathematical 

programming model (DMP) to solve the problem of finding the 
schedule for a set of uncorrelated changes JRFC with minimum 
overall service level violation costs in environment without 
queuing. Business process demand per time slot t, dit, the 
downtime of a service after the change start time, Δtj

down, and 
execution durations of services, Lj, are approximated by using 
their mean values. A penalty is paid per SLA violation. 

We introduce a binary decision variable xj,t∈ {0,1}
 
 

indicating whether j’s change is started in tj or not. 

The objective functions to minimize the total sum of 
penalties resulting from changes in service infrastructures 
without queuing is 
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Figure 3.  Non-Linear Business Processes and Service Flows 

We set the beginning of our change planning period to t=0 
and assume to obtain JRFC before t=0 (Note that in practice, 
changes will be requested on a continuous time base rather than 
bundled. The usual way to proceed is to re-calculate the 
optimization problem each time a new RFC is submitted. More 
advanced methods might forecast aggregated RFC ‘demand’ if 
changes are submitted in regular sequences. As we divide time 
into discrete time slots, time related parameters are of positive 
integer type (tj, Δtj

down, bi, Li, Lj ∈ Z0
+) and penalties and 

demand parameter are of positive real type (dit, pi ∈ R0
+). 

As further constraints we introduce change related 
deadlines tj

d. Depending on the severity of a change, there is 
generally a priority associated with a change, defining a 
deadline when a change needs to be implemented. This 
constraint can be formulated as 

RFCtj
ttt

Jjx
d

j
down

jj

∈∀=∑
<Δ+

,1,                      (9) 

Note that a change deadline is originally defined as a period 
Δtj

d  after tj
RFC, the time the RFC for j arrives. As we define 

tj,
RFC = 0, setting the deadline to tj

d instead of tj
RFC + Δtj

d suffices 
in our case.  

B. Stochastic Change Scheduling Model 
So far, we used deterministic approximations for expected 

demand, service downtime and service execution durations.  

One should expect that ignoring the probabilistic nature of 
demand, downtime and execution time has a negative impact 
on the decision making. Suppose a service j change, and a 
depending business process i with extremely high penalties to 
pay on service level violations. The average change related 
downtime of j is 10 but varies broadly, and the decision is 
either to start the change in t=0 or in t=50. The demand for i is 
expected to be slightly lower during t=0 – 9 than during t=50 – 
59 but increases rapidly from t=10 on, while demand is 
expected to be of constant level after t=59. The deterministic 
model would certainly select t=0 while a stochastic model 
explicitly taking into account uncertainty of downtime would 
select t=50, which would be the better decision.  

However, putting too much stochastic information into a 
decision model makes it – at least for medium and large 
problem sizes – intractable due to the large number of resulting 
decision variables and limits therefore its practical 
applicability. 

Therefore, we draw on a stochastic programming 
formulation with simple recourse as introduced for example by 
Birge and Louveaux to consider the stochastic nature of the 
variables while keeping the model computable [15, 16].  

This is illustrated using a change related downtime 
probability distribution as shown in Fig. 4. We separate the 
distribution into N sequential discrete sections n (n =1, …, N). 
The cumulated probability (integral) of a section is then 
interpreted as the downtime probability of one dedicated time 
slot in the section, while we suppose the downtime can only 
take these discrete downtime values: Δtj

down∈ {Δtj,1
down Δtj,2

down, 



…, Δtj,N
down}. The resulting objective function can be 

formulated as 
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The right part of the objective function computes the costs 
that would be resulted if the downtime would have been 
exactly Δtj,n

down; the term on the left is a correction for the 
uncertainty in downtime (a weight). 

Likewise, we model the other stochastic variables like 
business process demand during a time slot or the execution 
time of a service. Note that usually the parameters or even the 
type of distributions will depend on which time slot you 
consider. 

C. Change Fulfillment Deadlines and Waiting Costs 
As already mentioned, a change needs to be fulfilled in a 

maximum change fulfillment time Δtj
d after a change request is 

submitted. As discussed previously in this paper, the urgency 
depends on the priority of a change. In the basic deterministic 
model formulation we assumed that this deadline is mandatory.  

Considering the uncertainty in the time needed to perform 
the service change (we assume the service to be down during 
change activities) it can no longer be guaranteed to fulfill a 
change before the agreed change deadline; only a probability 
can be assigned to fulfilling the change in time. Therefore, the 
restriction that a change needs to be fulfilled before tj

d of the 
change deadline needs to be relaxed to 

RFCtj
t

Jjx ∈∀=∑ ,1,
                            (11) 

Exceeding a change deadline might entail a predefined 
penalty and extra payments for each additional time slot 
needed to fulfill the change. The later a change is started, the 
higher the expected costs of a deadline violation will be, since 
the probability of completing change implementations before 
their deadline will decrease continuously. 

Let the fixed penalty on change deadline violation be α, and 
the additional costs per time slot a deadline is exceeding be β. 
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Figure 4.  Probilistic Modelling, Downtime 

 

Therewith, the expected overall deadline violation cost 
function which needs to be added to the objective function as 
formulated in our decision model is   
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Note that for reasons of brevity we provide equations with 
only the service downtime modeled stochastically while other 
stochastic parameters are approximated by their mean values.  

Furthermore, the moment an RFC is submitted, there may 
already be a need felt for the change to be implemented as the 
business may suffer until the change has been fulfilled; for 
example, this may be due to a service being unavailable as 
would happen if the change request was initiated as a result of 
an incident, or there may be other negative impact causes, like 
lost opportunities such as would occur for a change meant to 
bring up a new required service. With γ as the implicit costs of 
waiting one more timeslots for a change to be fulfilled, the 
waiting costs can be formulated as 

tj
down

jj
t

xtt ,)( Δ+∑ γ                           (13) 

D. Allowed Change Windows 
Furthermore, the fulfillment time of a change might be 

restricted to a number of allowed change window time slots, 
e.g. at weekends or during night times. Violating a change 
window restriction might have serious impact on the business, 
as that would mean a service is down in times this service is 
frequently required. Therefore, penalties might result from 
exceeding a change window l (l=1, …, L). Let Tcj (Tcj = {tcj1

start, 
…, tcj1

end },  … {tcjL
start, …, tcjL

end } be the set of allowed change 
windows. As change related downtime might be of uncertain 
length, there is an increasing risk of violating the change 
window constraints the later a change is started. Withδ as the 
costs per time slot a change window is exceeded, and the 
restriction that a change has to (at least) start inside a change 
window (tj ∈ Tcj), the part that has to be added to the objective 
function as formulated in our decision model is 

 

tj
t

j
end

jl
end

jl
down

jj xttttt ,))):min((,0max(min∑ >−Δ+δ (14) 

E. Correlated Changes 
The basic model formulation handles multiple independent 

changes. To schedule changes in a mandatory order, a 
constraint for each dependency has to be added to the decision 
model formulation. Firstly, changes might need to be started in 
a certain sequence (tj < tj+1 < tj+2 < …) or a change must be 
fulfilled before the next change may get scheduled (tj +Δtj

down < 
tj+1 +Δtj+1

down < …). The constraints in our mathematical model 
formulation are therefore xit < x(j+1)t < t(j+2)t, or  xjt +Δtj

down < 
x(j+1)t +Δtj+1

down < tj+2, respectively.  



Besides mandatory change scheduling orders, changes 
might be correlated for example in terms of a reduction of 
aggregated downtime when executing changes together 
(imagine two changes to a server operating system, both 
requiring a reboot. The overall change duration might be 
reduced by applying these changes together, but this may result 
in higher risk in terms of higher downtime variance 
(incompatibilities, etc.).  

While arbitrary statistical values can be chosen, in our 
example we focus on mean (M) and variance (V) deviation. 
Therefore, we consider two changes to j and j+1 as correlated 
if either 

M(Δtj
down(t)+Δtj+1

down(t)) ≠ M(Δtj
down(t)+Δtj+1

down(t+Δt)) and/or  

V(Δtj
down(t)+Δtj+1

down(t)) ≠ V(Δtj
down(t)+Δtj+1

down(t+Δt)) 

We treat each change item combination with significant 
deviant aggregated statistical mean and/or variance values as 
one single change. The decision to make is to either schedule 
all included single changes separately or to schedule the novel 
‘aggregated’ change instead. This XOR constraint can be 
formulated as follows (if the question is to either change j and 
j+1 separately, or, alternatively the aggregated change (j, j+1)) 

22 ),1,(),1(, =++ ++∑ tjjtjtj
t

xxx                  (15) 

Furthermore, the change deadline for (j, j+1) is set to min 
(tj,RFC + Δtj

d, tj+1,RFC + Δtj+1
d).  

F. Change Re-Scheduling 
The decision model selects the time slot with the lowest 
expected overall costs based on business process demand 
forecasting. However, when approaching to tj, further 
knowledge is available of process demand and process 
instances’ states (progress). This knowledge can be used to 
reschedule the change start time tj. For example, if in (tj-1) 
more business process instances are running than expected, or a 
higher percentage of running instances is currently executing 
service j, there is a decision to make on whether to retain tj or 
to wait several timeslots. However, increasing delay costs and a 
higher probability of violating change window restrictions have 
to be taken into account when making such a decision. Note 
that demand forecasting for processes might be adapted by 
using short term prognoses if current demand differs 
significantly from demand expected beforehand. Furthermore, 
business process request arrivals might be modeled as Poison 
Process to consider the uncertainty regarding the exact arrival 
rates, with Pλ(i)(r=k) as the probability of k incoming service i 
requests in t. As we did with downtime uncertainty, we model 
the impact of different possible arrival rates weighted by their 
probabilities.  

V. EXPERIMENTAL ANALYSIS 
In this section, we analyze and discuss the efficiency of the 

scheduling models proposed in this paper. In our experimental 
evaluations we compared variants of our models to the optimal 
solutions (by scanning the total solution space), with total 

change related costs under different service infrastructures, 
demand scenarios, and downtime distributions used as a 
benchmark. First, the experimental set-up that we used for our 
preliminary experiments is described, and second, we report 
the results of our experiments and discuss their outcome. 

A. Experimental Set-Up 
We analyzed 12 different service infrastructure scenarios 

under different business process demand profiles. We used 
real-world data and data based on patterns found in literature to 
generate these infrastructure scenarios and demand profiles. 

The durations of each experiment was set to 300 time slots t 
(t= 0, …, 299), where the length of each time slot was set to 
one hour. The change deadline was set to tj

d=275 with fixed 
costs if this restriction was violated and additional costs per 
exceeded times slot. In our first evaluations, change windows, 
and waiting costs were not considered. To allow for sensitivity 
analysis how variations in the output of our models can be 
apportioned to variations of j’s downtime distribution, we 
repeated each experiment until our results were significant 
(referred to as experimental item, average over all outcomes) 
for each downtime distribution. We analyzed 8 different 
downtime distributions with increasing variance. To configure 
and automate our experiments and to analyze our experimental 
outcomes a simulation tool has been developed (see Fig. 5).  
The figure shows a visualization of an example service 
infrastructure scenario used in our experiments with two 
business processes, a linear and a forked process. 

An example business process demand scenario is shown in Fig. 
6. The graph shows the mean demand level M per time slot. 
We adapted the demand level after each time slot to generate a 
demand profile following these curves. During a time slot, we 
generated demand following a (M, 0.20M) normal probability 
distribution (uniformly distributed).  
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Figure 6.  Example Business Process Demand Scenario 



B. Experimental Results 
Experimental results show that the probabilistic decision 

model with a simple resource of the service downtime 
distributions (applying the objective function as shown in 
equation (10)) found the optimal solution for all experimental 
items. In experiments with low service downtime variance (less 
than 15% of the mean downtime duration), the deterministic 
model selected the change start time slot with minimum costs. 
Except one demand scenario with almost flat process demand 
levels, the deterministic variant never found the optimal 
solution in scenarios with one of the two highest downtime 
variances. Fig. 7 presents aggregated results of the cost savings 
by using either the deterministic or the probabilistic scheduling 
model. The bars show the change related costs when using one 
of the two decision model variants relative to the average costs 
over all scenarios (with a certain downtime variance level) 
when the change start time was selected randomly. 
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Figure 7.  Aggregated Experimental Results 

VI. SUMMARY AND OUTLOOK 
In this paper we introduced a model to analyze the business 

impact of changes in a network of services. We analyzed 
change related operational risks on active business process 
instances and techniques to relate these risks to financial 
metrics.   

To our best knowledge, our work is the first to formally 
quantify the risk of changing services in SOA environments to 
the business (processes), or that derives decision models which 
allow organizations to schedule service changes with minimum 
total expected costs. 

In our experimental analyses we evaluated the efficiency of 
our models compared to the optimal and average solution, with 
total change related costs under different demand scenarios and 
downtime distributions used as a benchmark. We conducted 
numerical experiments with various business process demand 
scenarios and different downtime distributions and made initial 
efficiency statements. Experimental results show that the 
proposed probabilistic model derived the optimal solution in all 
of our experiments, and the deterministic model only if the 
downtime variance was low. We hoped to obtain such results, 
but, however, it is not obvious that taking more stochastic 

information into account automatically leads to better results 
(e.g., in Airline Revenue Management, most of the 
deterministic seat inventory control approaches perform better 
than their stochastic pendants.   

Future working plans are more exhaustive sets of 
experiments with different, possibly real-world, business 
scenarios. Furthermore, we work on meta-heuristics and pre-
selecting time-slots to solve much large problem sizes. We 
intend to additionally explore the impact of rescheduling 
change times when approaching the planned change start time, 
the impact of uncertain service execution durations, and the 
impact of latency and change window violation costs. We also 
plan to test the models in the field as a decision support tool for 
change scheduling in selected businesses. Finally, we plan to 
tighten the connections to web services standards for 
describing the SOA network of services including IT resources.  
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