
Decision Support for Service Transition Management
Enforce Change Scheduling by Performing Change Risk and Business Impact Analysis

Thomas Setzer
Technische Universität München

Chair of Internet-based Information Systems
85748 Garching, Germany
thomas.setzer@in.tum.de

Kamal Bhattacharya, Heiko Ludwig
IBM T.J. Watson Research Center
Business-driven IT Management

19 Skyline Dr., Hawthorne, NY-10532, USA
{kamalb, hludwig}@us.ibm.com

Abstract In IT Service Delivery, alignment of service
infrastructures to continuously changing business requirements
is a primary cost driver, all the more as most severe service
disruptions can be attributed to poor change impact and risk
assessment. An IT service, defined as a means to provide value to
a consumer, may be realized by a network of shared application
and other resources that are invoked in the context of business
processes. In the spirit of Service-Oriented Architecture (SOA)
we consider each application or resource as a service. Changing
services or service definitions in such an environment includes
exceptionally high risk and complexity, as various business
processes might depend on a service. In this paper we propose a
model for analyzing the business impact of operational risks
resulting from change related service downtimes of uncertain
duration. The proposed solution takes into account the network
of dependencies between services where services may or may not
be realized through business processes. Based on the analytical
model, we derive decision models in terms of deterministic and
probabilistic mathematical programming formulations to
schedule single or multiple correlated changes efficiently.
Preliminary experiments are described to illustrate the efficiency
of the proposed models. Using these decisions models,
organizations can schedule service changes with the lowest
expected impact on the business.

Change Management, Service Transition Management,
Change Scheduling, Service-oriented Architectures, Business
Impact Analysis, Business-Driven IT Management

I. INTRODUCTION
In recent years, IT service management (ITSM) has

received much attention as enterprises understand that
operating their IT infrastructure is a large part of their overall
operating costs. Today’s businesses operate in dynamic
environments with the need to continuously adapt to changing
customer expectations, market trends, technical enhancements
or changes to legislation. These changes entail changes to IT
services and business processes to drive alignment of IT with
business requirements. According to current surveys
uncontrolled changes including flawed risk and impact analysis
cause more than 80% of business-critical service disruptions
[1].

Publicly available best-practices ITSM frameworks such as
the IT infrastructure Library (ITIL) define reference change
management processes including several activities like change
initiation, where a Request for Change (RFC) describing the

required change is submitted, change filtering, priority
allocation, categorization, planning, testing, fulfillment and
review. Major changes must be analyzed and approved, from a
technical as well as from a business point of view before they
get scheduled [2]. We focus on the impact of changes on the
business and on how to schedule changes with minimum
associated risks and costs.

As modern IT service infrastructures are continuously
transformed towards virtualized resource pools and Service-
Oriented Architectures, applications and infrastructure
resources can be viewed as services shared in a larger value
network and invoked in the context of various business
processes. Services can be described using standards such as
the Web Services Description Language (WSDL), describing
for example the service interfaces of services offered as Web
services, and invoked via a suitable Internet protocol. We
distinguish between different types of services. An atomic
service in our definition is a service with a well-defined
transaction boundary that provides a simple single operation
(e.g. generate IP or assignServerName). A business process
executes by invoking atomic services, other services that may
be composed of atomic services (e.g. short running automated
workflows) or other business processes. Each service is
executed on an IT resource. In principle, we can consider an IT
resource as a service as well. We exclude the details of the
implications of this approach for a later time.

Considering the number of business processes in an
enterprise and the complexity of the dependency network of
processes to invoked services, changes in this kind of
environment may pose significant risks due to the multitude of
interdependencies und uncertainties to manage, and the impact
of failures is likely to be business-critical as many business
processes might depend on this service. Therefore, efficient
and reliable change management aiming at continuous service
delivery by automatically considering the dependency chains is
essential.

Consider the following example, illustrated in Fig. 1, which
we found in many companies: a business process application
runs several customer relationship management (CRM)
processes, from lead generation to sales order generation
(CRM covers concepts to manage relationships with customers,
including the capture, storage and analysis of customer, vendor,
partner, and internal process information). The application
itself is hosted on one or more physical resources and has

dependencies to other applications (or services) and
infrastructural components. Estimating the impact of an
application failure is – without detailed knowledge of the
dependency chains - a fairly manageable problem. The left
scenario shows a pictorial of a Tivoli CCMDB discovery [3],
where application A is connected to application B. Downtime
of Application B means an impact on Application A. This view
however is not sufficient as an organization managing the
business process application A will alert business users that the
CRM application will be unavailable, which could for example
lead to unfulfilled sales orders. The right pictorial illustrates the
more realistic scenario, where A is hosting two processes, e.g.
lead generation and sales order generation. The actual
downtime of application B may only lead to unavailability of
lead generation but not sales order generation (which in the
CRM context is a much lower risk). Furthermore, based on the
fact that the affected lead generation may be a long-running
business process, one can imagine that only a subset of all
running instances will be affected depending on the state of
each instance. The longer the duration of downtime for a given
service or application or network resource that is used by a
business process is, the more likely it is to experience business
value attrition due to SLA violations and associated penalties.
We believe that change scheduling should take this level of
detail into account to minimize the risk of downtime for
business value generating services.

How many instances of a particular process are affected
highly depends on the business process demand while fulfilling
the change. Process demand, however, is generally not known
a-priori but has to be approximated by means of forecasting
techniques.

The focus of this paper is to determine and minimize
change related risk in Service-Oriented Business environments
as illustrated above by introducing decisions models allowing
organizations for scheduling service changes with the lowest
expected financial loss, or cost. We propose models for
analyzing the business impact of change related service
downtimes of uncertain length, as the impact on dependent,
active business processes is analyzed and transferred into
financial losses. The proposed solution automatically considers
the dependency chain from a business process down to affected
resources, applications or other services realized by business
processes. Based on these analytical models, we derive
decision models in terms of deterministic and probabilistic
mathematical programming formulations allowing for
scheduling single or multiple correlated changes efficiently.
First Experiments and sensitivity analyses are described to
illustrate the efficiency of the proposed models.

Figure 1. Business Process Application Dependencies

The outline of this paper is structured as follows: in Section
2 we review related work in this field. In Sections 3 we discuss
in detail techniques on how to estimate and quantify
operational risks of service transitions. Subsequently, in
Section 4 we introduce a basic deterministic decision model
and probabilistic extensions to determine efficient change
schedules in different business scenarios. We further provide
model extensions to take into account change correlations and
other sources of risks like change deadline or change window
violation risks. In Section 5, we describe the setup of our
preliminary experiments conducted to make first efficiency
statements of the models and present our experimental
outcomes. Finally, in Section 6, we summarize and conclude.

II. RELATED WORK
In this section we review previous work and guidelines in

IT change risk analysis and management related to the work
described in this paper.

The definition of risk itself varies broadly according to the
specific domain one looks at. The most general definition of
risk is ‘uncertainty of outcome’ [4]. In our case, the outcome is
change related cost materialized as financial loss. To analyze
risk impact, i.e., resulting costs for the business, we draw on a
two-stage approach; first scanning for possible outcomes and
quantifying this outcomes in terms of monetary consequences,
and second, weighting these outcomes by their probabilities.
This approach is generally known as probabilistic risk analysis
as introduced in [5].

In IT change management, most approaches found allow
for risk analyses that are not directly transferable to business or
financial impact or provide general guidance to change
management considering associated risk.

Publicly available best-practices ITSM frameworks and
standards such as the IT infrastructure Library (ITIL) [6] or
Control Objectives for Information, and related Technology
(COBIT) [7] provide guidance on how to perform service
management tasks and are validated across a diverse set of
environments and situations. As of the importance of managing
service changes or transitions efficiently, particular with
respect to associated risks, this topic has recently become a
mayor focus herein. For example, the Office of Governmental
Commerce (OGC) dedicated in the newly published ITIL
version 3.0 (May 2007) an own book on how to manage
service transitions efficiently, with special regards to associated
risks [4]. However, ITIL and related best-practices frameworks
provide high-level guidance for performing a service
management task like managing a change, but do not provide
guidance on how to do the actual change management
implementation, e.g., on how to determine and quantify change
related risks and costs in a particular business environment.

Some commercial tools and dashboard applications are
available that claim to assist in managing changes, although not
enough details are available that can be used to evaluate and
compare the involved methods [8, 9, 10, 11].

Some papers have presented approaches to qualitatively
evaluate risk, for example [12], but do not provide quantitative
risk analysis with regard to business impact.

Keller and Hellerstein present the CHAnge Management
with Planning and Scheduling (CHAMPS) system to automate
steps in the execution of changes. The authors propose decision
models to solve different scheduling problems like maximizing
the number of changes, minimizing overall downtime, or
minimizing the costs associated with change related downtime.
The authors assume knowledge of the cost functions for
performing a change job at time t, while we focus on how to
derive cost functions from change related downtime risks to the
business processes [13].

Rebouças, Sauvé, Moura, Bartolini and Trastour address
the problem of scheduling changes in a way to minimize the
financial loss imposed by SLA violations when the
implementation of changes exceed change deadlines. The
authors explicitly consider uncertainty in change fulfillment
durations. [14].

Our work serves to filling the gap in work addressing the
formal quantification of service change risk to active and
depending business processes, enabling the scheduling of
service changes with minimum total expected costs.

III. SERVICE TRANSISTIONS AND ASSOCIATED RISK ON
BUSINESS PROCESSES

The goal of service transition management is to plan and
control service changes and deploying changed service releases
into the production environment successfully, i.e., with
minimum negative impact to the business. We assume that a
service is down during the change fulfillment period. As
described in Section 1, service transition in Service-Oriented
Architectures is coupled with exceptionally high risk and
complexity, as there are multiple interdependencies und
uncertainties and many business processes might depend on a
service. To estimate the risk of services changes to the business
(processes), a clear picture and a formal description of the
business process and service dependency structure is
mandatory. Existing models like the Web Services Business
Process Execution Language (WS-BPEL) or Business Process
Modeling Language (BPMN) can be used to derive the
dependency structure, but address many aspects not of
immediate interest here. Although there is a clear mapping onto
SOA models, we will now introduce a notation that is used
throughout this paper to formalize the process and service
dependencies relevant for our decision making.

Let I be the total number of different types of business
processes i (i=1, …, I), requested stochastically following a
demand distribution or profile Di. In other words, there are I
different business process definitions existing, instantiated on
request. A second layer service definition j (j=1, …, J)
describes an aggregated or composite service on the layer
below the business process layer (i.e., the first layer). This
layer represents typically automated workflows that merely
string together several atomic services. Furthermore, an
assignment variable uij indicates that a business process i
implements service j in step uij. Steps of a business process i
are enumerated by ni (ni=1, … Nj). We set uij=0 if a business
process i definition does not implement service j. In the same
manner we model the dependencies of lower-level services.
We enumerate the service descriptions on the next lower

aggregation level by k (k=1, …, K) and assign these third-level
services by setting ujk correspondingly to the step nj (nj=1, …

conditionB
us

in
es

s
Pr

oc
es

s
A

to
m

ic
S

er
vi

ce
C

om
po

si
te

S

er
vi

ce

i uij

j

k

ujk

…

Figure 2. Three Layer Service Dependency Model

Nj) in the j service flow definition. Likewise, we set ujk=0 if k is
not implemented by j. Fig. 2 illustrates the resulting
dependency structure.

Using this dependency model, one can automatically derive
which higher-lever services and business processes are affected
by a specific service downtime.

However, to estimate the business impact of a change,
additional information is required, like how many instances of
business processes are affected, and how many service level
agreements of these processes are expected to be violated.

The amount of affected business process instances depends
on the business process demand at and before the time a
change is fulfilled. Business forecasting techniques are used to
estimate the demand for a certain business process during a
particular period of time. With Di as a business process i’s
demand distribution profile (i.e., the demand distributions
profile of all considered time slots t, Dit, demand forecasts dit
are possible for a certain time slot t (for example by setting dit
to Dit’s mean value).

For the sake of computational efficiency, we divide time
into small discrete time slots, wherein we assume a fixed level
demand profile. The costs of business process disruptions or
delays are defined in SLAs. A SLA typically includes a
process’ maximum response or execution time Li and the
definition of (monetary) penalties pi to pay on SLA violations.
Depending on a SLA, penalties are paid per maximum
response time violation, if the number of service level
violations during a given time span exceeds a defined threshold
value, or other individual agreements. Simply multiplying the
number of process instances expected during the duration of a
change with the penalties would overestimate change related
costs, as not all running business process instances will be
disrupted or delayed. For example, business process instances
which already passed the step implementing the service that is
going to be changed will not be affected at all, nor is there an
impact on running processes instances which will execute the
changed service after the change is fulfilled and the service is
again available. Furthermore, business processes and services
might be queued. If the time buffer, i.e., the difference between
the maximum execution time and the normal or usual

execution time is large enough, there is a chance to still execute
affected processes instances in a SLA compliant way.

In the following, a procedure is described to estimate the
amount of SLA violations if queuing is not possible.
Furthermore we extend our discussion by including queuing
processes and services. We start out with a deterministic model
by assuming complete knowledge of process demand per time
slot and change related downtime followed by introducing a
probabilistic model to account for uncertainty in both demand
and service downtime.

A. SLA violations without queuing
Consider a request for change (RFC) for service j, where j

will be unavailable for a duration Δtj
down after the change start

time tj. The task is to estimate dijt
p, the number of SLA

violations of dependent business process instances. Given this
number for each affected business process, the estimated costs
of changing j in t, cjt are

 p
ijt

i
ijt dpc ∑= (1)

To predict dijt
p we proceed as follows: all service instances

executing j during time period [tj; tj+Δtj
down]) are disrupted.

From a planning perspective, we assume equal arrival rates of
business process requests (principle of indifference) as there is
only aggregated knowledge of service demand per time slot
available. This assumption is tight as long as the forecasting
time periods are kept small. Of interest is the demand for a
business process i not only during the change downtime Δtj

down
but also before tj as running process instances starting before tj
might reach j during [tj, tj+Δtj

down]. Depending on the step in
which a business process i implements service j, business
process instances starting after tj-Li might be affected if j is
executed in the last process step (uij =Ni). If j is executed in the
next to last step (uij = Ni-1), only process instances starting after
tj - Li + LN(i) are affected, etc. On the other side, if i implements
j in step Ni and the total execution duration of preceding
process steps exceeds j’s downtime, instances starting during
[tj, tj+Δtj

down] are not affected by the current change. To
approximate the demand for a business processes i with j
execution overlapping with [tj, tj+Δtj

down], dijt
p, we therefore

consider business processes demand during

]''t;' L - [t
''

j
'

ij j
j

down
jj

j
LtL ∑∑ −Δ++ (2)

where j’ is a service executed in a process i steps preceding j’s
implementation step and j’’ is a service executed in a step after
j’s implementation step.

An alternative, more coarse-grained way of approximating
dijt

p, with no further knowledge of the concrete step a process i
implements a service j is described in the following: assuming
an equal demand distribution around tj, the percentage of i
business process instances executing j during in [tj, tj+Δtj

down] is
(on average)

i

j

L
L (3)

where Lj is the execution duration of j, and Li is the overall
process execution duration. The probability that a running
process instance (executing a step preceding uij) will reach j in
[t;, tj+Δtj

down] is

i

down
j

L
tΔ (4)

Therewith, the expected total costs of SLA violations
caused by changing j in tj are

i
down

jijt
i

j
down

j

ui
jt ptd

L
Lt

c
ij

))((
0:

Δ
+Δ

= ∑
>

 (5)

B. SLA violations with queuing
We will now look at the estimated costs of changing j in

time slot t if queuing (or buffering) is allowed. Here, not all
business process instances executing j overlapping with [tj;
tj+Δtj

down] are disrupted as instances can re-execute j after the
change is fulfilled. If a SLA is violated depends on a process’
time buffer bi (bi = Li,max – Li), where Li,max is the maximum
execution time of a process, and Li is the normal or usual
execution time of a process. Again, the probability of a process
instance currently executing j is shown in equation (3). If bi ≤
Δtj

down, all considered process i instances will exceed the
maximum response time. If bi > Δtj

down + Lj, no service instance
is disrupted. If Δtj

down < bi < Δtj
down + Lj,

there is a change of a rollback and re-execution without SLA
violation if the time buffer exceeds the amount of time already
spend executing j before tj plus j’s downtime Δtj

down . This
probability is shown in equation (6)

)1()(
i

i

i

j

L
b

L
L

− (6)

The probability that a running process instance (executing
preceding steps) will reach j in [tj; tj+Δtj

down] is shown in (4). If
bi > Δtj

down, all services are delivered successfully. If bi <
Δtj

down, the average rate of successful delivered business
process instances is

)()(down
j

i

i

down
j

t
b

L
t

Δ

Δ (7)

C. Non-Linear Business Processes and Service Flows
The estimation of change related penalties as introduced in

the previous section assumes linear business processes and
service flows with a predetermined sequence of service
executions. In practice, business processes might take different

branches or service flow paths based on certain conditions. One
branch might include a service to be changed while others do
not. Hence, business process forecasting ignoring such
conditional branches overestimates the number of SLA
violations and costs. A finer-grained demand forecast is
required for each possible branch. This forecast can be derived
by analyzing the history of the different executed branches in
the same way the total demand for linear processes is derived
by business forecasting methods. We model each branch as
own business process as shown in Fig. 3.

Using this statistical means, one can model forked business
processes. Processes including iterative sequences like loops
can be demodulated in the same manner, by defining each
possible flow as an own process and by assigning probabilities
derived from statistical analyses of log data.

IV. CHANGE SCHEDULING DECISION MODELS
We will first introduce a basic change scheduling decision

model for shared services underlying a number of restrictive
assumptions like perfect knowledge of business process
demand per time slot and deterministic change related
downtimes of services. Afterwards, we will propose model
variants considering uncertainty in business process demand
and stochastic service downtime. Based on these model
formulations, a couple of extensions are introduced to consider
other types of operational risks and costs associated with
service transitions. Furthermore, we address the problem of
handling correlated changes.

A. Basic Deterministic Model
We will now introduce a deterministic mathematical

programming model (DMP) to solve the problem of finding the
schedule for a set of uncorrelated changes JRFC with minimum
overall service level violation costs in environment without
queuing. Business process demand per time slot t, dit, the
downtime of a service after the change start time, Δtj

down, and
execution durations of services, Lj, are approximated by using
their mean values. A penalty is paid per SLA violation.

We introduce a binary decision variable xj,t∈ {0,1}

indicating whether j’s change is started in tj or not.

The objective functions to minimize the total sum of
penalties resulting from changes in service infrastructures
without queuing is

tji
down

jijt
i

j
down

j

ui tJj

xptd
L

Lt

ijRFC

,
0:

))((min Δ
+Δ

∑ ∑∑
>∈

 (8)

uij

i+1

i+2

i+3

i Di =

Di+1

Di+3

Di+2

+

+

Figure 3. Non-Linear Business Processes and Service Flows

We set the beginning of our change planning period to t=0
and assume to obtain JRFC before t=0 (Note that in practice,
changes will be requested on a continuous time base rather than
bundled. The usual way to proceed is to re-calculate the
optimization problem each time a new RFC is submitted. More
advanced methods might forecast aggregated RFC ‘demand’ if
changes are submitted in regular sequences. As we divide time
into discrete time slots, time related parameters are of positive
integer type (tj, Δtj

down, bi, Li, Lj ∈ Z0
+) and penalties and

demand parameter are of positive real type (dit, pi ∈ R0
+).

As further constraints we introduce change related
deadlines tj

d. Depending on the severity of a change, there is
generally a priority associated with a change, defining a
deadline when a change needs to be implemented. This
constraint can be formulated as

RFCtj
ttt

Jjx
d

j
down

jj

∈∀=∑
<Δ+

,1, (9)

Note that a change deadline is originally defined as a period
Δtj

d after tj
RFC, the time the RFC for j arrives. As we define

tj,
RFC = 0, setting the deadline to tj

d instead of tj
RFC + Δtj

d suffices
in our case.

B. Stochastic Change Scheduling Model
So far, we used deterministic approximations for expected

demand, service downtime and service execution durations.

One should expect that ignoring the probabilistic nature of
demand, downtime and execution time has a negative impact
on the decision making. Suppose a service j change, and a
depending business process i with extremely high penalties to
pay on service level violations. The average change related
downtime of j is 10 but varies broadly, and the decision is
either to start the change in t=0 or in t=50. The demand for i is
expected to be slightly lower during t=0 – 9 than during t=50 –
59 but increases rapidly from t=10 on, while demand is
expected to be of constant level after t=59. The deterministic
model would certainly select t=0 while a stochastic model
explicitly taking into account uncertainty of downtime would
select t=50, which would be the better decision.

However, putting too much stochastic information into a
decision model makes it – at least for medium and large
problem sizes – intractable due to the large number of resulting
decision variables and limits therefore its practical
applicability.

Therefore, we draw on a stochastic programming
formulation with simple recourse as introduced for example by
Birge and Louveaux to consider the stochastic nature of the
variables while keeping the model computable [15, 16].

This is illustrated using a change related downtime
probability distribution as shown in Fig. 4. We separate the
distribution into N sequential discrete sections n (n =1, …, N).
The cumulated probability (integral) of a section is then
interpreted as the downtime probability of one dedicated time
slot in the section, while we suppose the downtime can only
take these discrete downtime values: Δtj

down∈ {Δtj,1
down Δtj,2

down,

…, Δtj,N
down}. The resulting objective function can be

formulated as

tji
down

njijt
i

j
down

nj

ui

down
nj

N

ntJj
xptd

L
Lt

tP
ijRFC

,,
,

0:
,

1
)()(min Δ

+Δ
Δ∑ ∑∑∑

> =∈

(10)

The right part of the objective function computes the costs
that would be resulted if the downtime would have been
exactly Δtj,n

down; the term on the left is a correction for the
uncertainty in downtime (a weight).

Likewise, we model the other stochastic variables like
business process demand during a time slot or the execution
time of a service. Note that usually the parameters or even the
type of distributions will depend on which time slot you
consider.

C. Change Fulfillment Deadlines and Waiting Costs
As already mentioned, a change needs to be fulfilled in a

maximum change fulfillment time Δtj
d after a change request is

submitted. As discussed previously in this paper, the urgency
depends on the priority of a change. In the basic deterministic
model formulation we assumed that this deadline is mandatory.

Considering the uncertainty in the time needed to perform
the service change (we assume the service to be down during
change activities) it can no longer be guaranteed to fulfill a
change before the agreed change deadline; only a probability
can be assigned to fulfilling the change in time. Therefore, the
restriction that a change needs to be fulfilled before tj

d of the
change deadline needs to be relaxed to

RFCtj
t

Jjx ∈∀=∑ ,1,
 (11)

Exceeding a change deadline might entail a predefined
penalty and extra payments for each additional time slot
needed to fulfill the change. The later a change is started, the
higher the expected costs of a deadline violation will be, since
the probability of completing change implementations before
their deadline will decrease continuously.

Let the fixed penalty on change deadline violation be α, and
the additional costs per time slot a deadline is exceeding be β.

Δtjdown

Probability

∆tj,5down∆tj,3down

∫

Figure 4. Probilistic Modelling, Downtime

Therewith, the expected overall deadline violation cost
function which needs to be added to the objective function as
formulated in our decision model is

jt
d

j
down

jj

t

d
j

down
jj

xttt

ttt

))),0(max(

)0)((min

−Δ+

+>−Δ+∑
β

α
 (12)

Note that for reasons of brevity we provide equations with
only the service downtime modeled stochastically while other
stochastic parameters are approximated by their mean values.

Furthermore, the moment an RFC is submitted, there may
already be a need felt for the change to be implemented as the
business may suffer until the change has been fulfilled; for
example, this may be due to a service being unavailable as
would happen if the change request was initiated as a result of
an incident, or there may be other negative impact causes, like
lost opportunities such as would occur for a change meant to
bring up a new required service. With γ as the implicit costs of
waiting one more timeslots for a change to be fulfilled, the
waiting costs can be formulated as

tj
down

jj
t

xtt ,)(Δ+∑ γ (13)

D. Allowed Change Windows
Furthermore, the fulfillment time of a change might be

restricted to a number of allowed change window time slots,
e.g. at weekends or during night times. Violating a change
window restriction might have serious impact on the business,
as that would mean a service is down in times this service is
frequently required. Therefore, penalties might result from
exceeding a change window l (l=1, …, L). Let Tcj (Tcj = {tcj1

start,
…, tcj1

end }, … {tcjL
start, …, tcjL

end } be the set of allowed change
windows. As change related downtime might be of uncertain
length, there is an increasing risk of violating the change
window constraints the later a change is started. Withδ as the
costs per time slot a change window is exceeded, and the
restriction that a change has to (at least) start inside a change
window (tj ∈ Tcj), the part that has to be added to the objective
function as formulated in our decision model is

tj
t

j
end

jl
end

jl
down

jj xttttt ,))):min((,0max(min∑ >−Δ+δ (14)

E. Correlated Changes
The basic model formulation handles multiple independent

changes. To schedule changes in a mandatory order, a
constraint for each dependency has to be added to the decision
model formulation. Firstly, changes might need to be started in
a certain sequence (tj < tj+1 < tj+2 < …) or a change must be
fulfilled before the next change may get scheduled (tj +Δtj

down <
tj+1 +Δtj+1

down < …). The constraints in our mathematical model
formulation are therefore xit < x(j+1)t < t(j+2)t, or xjt +Δtj

down <
x(j+1)t +Δtj+1

down < tj+2, respectively.

Besides mandatory change scheduling orders, changes
might be correlated for example in terms of a reduction of
aggregated downtime when executing changes together
(imagine two changes to a server operating system, both
requiring a reboot. The overall change duration might be
reduced by applying these changes together, but this may result
in higher risk in terms of higher downtime variance
(incompatibilities, etc.).

While arbitrary statistical values can be chosen, in our
example we focus on mean (M) and variance (V) deviation.
Therefore, we consider two changes to j and j+1 as correlated
if either

M(Δtj
down(t)+Δtj+1

down(t)) ≠ M(Δtj
down(t)+Δtj+1

down(t+Δt)) and/or

V(Δtj
down(t)+Δtj+1

down(t)) ≠ V(Δtj
down(t)+Δtj+1

down(t+Δt))

We treat each change item combination with significant
deviant aggregated statistical mean and/or variance values as
one single change. The decision to make is to either schedule
all included single changes separately or to schedule the novel
‘aggregated’ change instead. This XOR constraint can be
formulated as follows (if the question is to either change j and
j+1 separately, or, alternatively the aggregated change (j, j+1))

22),1,(),1(, =++ ++∑ tjjtjtj
t

xxx (15)

Furthermore, the change deadline for (j, j+1) is set to min
(tj,RFC + Δtj

d, tj+1,RFC + Δtj+1
d).

F. Change Re-Scheduling
The decision model selects the time slot with the lowest
expected overall costs based on business process demand
forecasting. However, when approaching to tj, further
knowledge is available of process demand and process
instances’ states (progress). This knowledge can be used to
reschedule the change start time tj. For example, if in (tj-1)
more business process instances are running than expected, or a
higher percentage of running instances is currently executing
service j, there is a decision to make on whether to retain tj or
to wait several timeslots. However, increasing delay costs and a
higher probability of violating change window restrictions have
to be taken into account when making such a decision. Note
that demand forecasting for processes might be adapted by
using short term prognoses if current demand differs
significantly from demand expected beforehand. Furthermore,
business process request arrivals might be modeled as Poison
Process to consider the uncertainty regarding the exact arrival
rates, with Pλ(i)(r=k) as the probability of k incoming service i
requests in t. As we did with downtime uncertainty, we model
the impact of different possible arrival rates weighted by their
probabilities.

V. EXPERIMENTAL ANALYSIS
In this section, we analyze and discuss the efficiency of the

scheduling models proposed in this paper. In our experimental
evaluations we compared variants of our models to the optimal
solutions (by scanning the total solution space), with total

change related costs under different service infrastructures,
demand scenarios, and downtime distributions used as a
benchmark. First, the experimental set-up that we used for our
preliminary experiments is described, and second, we report
the results of our experiments and discuss their outcome.

A. Experimental Set-Up
We analyzed 12 different service infrastructure scenarios

under different business process demand profiles. We used
real-world data and data based on patterns found in literature to
generate these infrastructure scenarios and demand profiles.

The durations of each experiment was set to 300 time slots t
(t= 0, …, 299), where the length of each time slot was set to
one hour. The change deadline was set to tj

d=275 with fixed
costs if this restriction was violated and additional costs per
exceeded times slot. In our first evaluations, change windows,
and waiting costs were not considered. To allow for sensitivity
analysis how variations in the output of our models can be
apportioned to variations of j’s downtime distribution, we
repeated each experiment until our results were significant
(referred to as experimental item, average over all outcomes)
for each downtime distribution. We analyzed 8 different
downtime distributions with increasing variance. To configure
and automate our experiments and to analyze our experimental
outcomes a simulation tool has been developed (see Fig. 5).
The figure shows a visualization of an example service
infrastructure scenario used in our experiments with two
business processes, a linear and a forked process.

An example business process demand scenario is shown in Fig.
6. The graph shows the mean demand level M per time slot.
We adapted the demand level after each time slot to generate a
demand profile following these curves. During a time slot, we
generated demand following a (M, 0.20M) normal probability
distribution (uniformly distributed).

A
to

m
ic

Se

rv
ic

e

LDAP Web
Service

Client DB
Service

LDAP
Look-Up

Assign Auth.
To Mgr

Receive
Decision

Prepare Server
Config. Data

Order
Hardware

condition
i uij

k

ujk

Demand
P1

Demand
P2

Figure 5. Analyzed Service Infrastructure Scenario

Business Process Demand Profile, Demand Scenario 1

0

2

4

6

8

10

12

14

16

18

20

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

Timeslot t

De
m

an
d

pe
r T

im
e

S
lo

t

Demand P1

Demand P2,
Low Branch

Figure 6. Example Business Process Demand Scenario

B. Experimental Results
Experimental results show that the probabilistic decision

model with a simple resource of the service downtime
distributions (applying the objective function as shown in
equation (10)) found the optimal solution for all experimental
items. In experiments with low service downtime variance (less
than 15% of the mean downtime duration), the deterministic
model selected the change start time slot with minimum costs.
Except one demand scenario with almost flat process demand
levels, the deterministic variant never found the optimal
solution in scenarios with one of the two highest downtime
variances. Fig. 7 presents aggregated results of the cost savings
by using either the deterministic or the probabilistic scheduling
model. The bars show the change related costs when using one
of the two decision model variants relative to the average costs
over all scenarios (with a certain downtime variance level)
when the change start time was selected randomly.

Aggregated Results, Change Related Costs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8
Downtime Variance Level

R
el

at
iv

e
C

os
ts

 (C
om

pa
re

d
to

 A
ve

ra
ge

)

Model w ith Deterministic Dow ntime Model w ith Probabilistic Dow ntime

Figure 7. Aggregated Experimental Results

VI. SUMMARY AND OUTLOOK
In this paper we introduced a model to analyze the business

impact of changes in a network of services. We analyzed
change related operational risks on active business process
instances and techniques to relate these risks to financial
metrics.

To our best knowledge, our work is the first to formally
quantify the risk of changing services in SOA environments to
the business (processes), or that derives decision models which
allow organizations to schedule service changes with minimum
total expected costs.

In our experimental analyses we evaluated the efficiency of
our models compared to the optimal and average solution, with
total change related costs under different demand scenarios and
downtime distributions used as a benchmark. We conducted
numerical experiments with various business process demand
scenarios and different downtime distributions and made initial
efficiency statements. Experimental results show that the
proposed probabilistic model derived the optimal solution in all
of our experiments, and the deterministic model only if the
downtime variance was low. We hoped to obtain such results,
but, however, it is not obvious that taking more stochastic

information into account automatically leads to better results
(e.g., in Airline Revenue Management, most of the
deterministic seat inventory control approaches perform better
than their stochastic pendants.

Future working plans are more exhaustive sets of
experiments with different, possibly real-world, business
scenarios. Furthermore, we work on meta-heuristics and pre-
selecting time-slots to solve much large problem sizes. We
intend to additionally explore the impact of rescheduling
change times when approaching the planned change start time,
the impact of uncertain service execution durations, and the
impact of latency and change window violation costs. We also
plan to test the models in the field as a decision support tool for
change scheduling in selected businesses. Finally, we plan to
tighten the connections to web services standards for
describing the SOA network of services including IT resources.

REFERENCES
[1] CRM Today: Change Control Management, URL:

http://www.crm2day.com/news/crm/118482.php
[2] Office of Government Commerce: ITIL Service Support. The Stationery

Office, London, 2000
[3] IBM Tivoli Change and Configuration Management Database, URL:

www.ibm.com/software/tivoli/products/ccmdb/
[4] Office of Government Commerce: Management of Risk: Guidance for

Practioneers. The Stationery Office, London, 2007
[5] Kaplan, S. and Garrick, B.J., “On the Quantitative Definition of Risk”

Risk Analysis, Vol. 1, 1981
[6] OGC’s Official ITIL Website, URL: http://www.best-management-

practice.com/IT-Service-Management-ITIL
[7] IT Governance Institute, “COBIT 3rd Edition”, 2000,

www.isaca.org/cobit.htm
[8] IT Service Management - Change and Configuration Management:

Reducing Risk by understanding your infrastructure, URL: http://www-
03.ibm.com/solutions/itsolutions/doc/content/bin/itsol_it_service_manag
ement_change_and_configuration_management.pdf

[9] Cisco IT Balances Innovation and Risk With Change Management
Process,URL:http://www.cisco.com/web/about/ciscoitatwork/case_ \
studies/business_management_dl2.html

[10] BMC Remedy Change Management Dashboard,
www.bmc.com/products/documents/25/43/62543/62543.pdf

[11] HP Mercury Change Control Management, URL:
http://www.mercury.com/us/products/change-control-management/

[12] Goolsbey J., “Risk-Based IT Change Management”, URL:
http://web.reed.edu/nwacc/programs/awards/excellence_award/pnnl_sub
missions_07/pnnl_risk-based_it_change_management.pdf

[13] Keller, A., Hellerstein, J.L., Wolf, J.L., Wu, K.-L., Krishnan, V., "The
CHAMPS system: change management with planning and scheduling",
in: Network Operations and Management Symposium, 2004

[14] Rebouças, R., Sauvé J., Moura A., Bartolini C., Trastour D., “A
Decision Support Tool for Optimizing Scheduling of IT Changes”, 10th
IFIP/IEEE Symposium on Integrated Management, 2007

[15] S. V. de Boer, R. Freling, N. Piersma, “Stochastic Programming for
Multiple-Leg Network Revenue Management” Report EI-9935/A ,
ORTEC Consultants, Gouda, Netherlands, 1999

[16] J.R. Birge, F. Louveaux, “Introduction to Stochastic Programming,”
Springer Series in Operations Research, 1997

